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Abstract
Differentially-private (DP) databases allow for privacy-

preserving analytics over sensitive datasets or data streams. In 
these systems, user privacy is a limited resource that must be 
conserved with each query. We propose Turbo, a novel, state-
of-the-art caching layer for linear query workloads over DP 
databases. Turbo builds upon private multiplicative weights 
(PMW), a DP mechanism that is powerful in theory but inef-
fective in practice, and transforms it into a highly-effective 
caching mechanism, PMW-Bypass, that uses prior query re-
sults obtained through an external DP mechanism to train 
a PMW to answer arbitrary future linear queries accurately 
and “for free” from a privacy perspective. Our experiments 
on public Covid and CitiBike datasets show that Turbo with 
PMW-Bypass conserves 1.7 − 15.9× more budget compared 
to vanilla PMW and simpler cache designs, a significant im-
provement. Moreover, Turbo provides support for range query 
workloads, such as timeseries or streams, where opportunities 
exist to further conserve privacy budget through DP parallel 
composition and warm-starting of PMW state. Our work pro-
vides a theoretical foundation and general system design for 
effective caching in DP databases.

CCS Concepts: • Security and privacy → Data anonymiza-
tion and sanitization.

1 Introduction
ABC collects lots of user data from its digital products to 

analyze trends, improve existing products, and develop new 
ones. To protect user privacy, the company uses a restricted 
interface that removes personally identifiable information and 
only allows queries over aggregated data from multiple users. 
Internal analysts use interactive tools like Tableau to examine 
static datasets and run jobs to calculate aggregate metrics over 
data streams. Some of these metrics are shared with external 
partners for product integrations. However, due to data recon-
struction attacks on similar “anonymized” and “aggregated” 
data from other sources, including the US Census Bureau [29] 
and Aircloak [17], the CEO has decided to pause external
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aggregate releases and severely limit the number of analysts
with access to user data statistics until the company can find
a more rigorous privacy solution.

The preceding scenario, while fictitious, is representative
of what often occurs in industry and government, leading to
obstacles to data analysis or incomplete privacy solutions. In
2007, Netflix withdrew “anonymized” movie rating data and
canceled a competition due to de-anonymization attacks [52].
In 2008, genotyping aggregate information from a clinical
study led to the revelation of participants’ membership in the
diagnosed group, prompting the National Institutes of Health
to advise against the public release of statistics from clinical
studies [4]. In 2021, New York City excluded demographic
information from datasets released from their CitiBike bike
rental service, which could reveal sensitive user data [3]. The
city’s new, more restrained data release not only remains
susceptible to privacy attacks but also prevents analyses of
how demographic groups use the service.

Differential privacy (DP) provides a rigorous solution to
the problem of protecting user privacy while analyzing and
sharing statistical aggregates over a database. DP guaran-
tees that analysts cannot confidently learn anything about
any individual in the database that they could not learn if
the individual were not in the database. Industry and govern-
ment have started to deploy DP for various use cases [22],
including publishing trends in Google searches related to
Covid [10], sharing LinkedIn user engagement statistics with
outside marketers [53], enabling analyst access to Uber mo-
bility data while protecting against insider attacks [36], and
releasing the US Census’ 2020 redistricting data [5]. To facil-
itate the application of DP, industry has developed a suite of
systems, ranging from specialized designs like the US Census
TopDown [5] and LinkedIn Audience Engagements [53] to
more general DP SQL systems, like GoogleDP [62], Uber
Chorus [36], and Tumult Analytics [12].

DP systems face a significant challenge that hinders their
wider adoption: they struggle to handle large workloads of
queries while maintaining a reasonable privacy guarantee.
This is known as the “running out of privacy budget” problem
and affects any system, whether DP or not, that aims to release
multiple statistics from a sensitive dataset. A seminal paper
by Dinur and Nissim [23] proved that releasing too many
accurate linear statistics from a dataset fundamentally enables
its reconstruction, setting a lower bound on the necessary
error in queries to prevent such reconstruction. Successful re-
constructions of the US Census 2010 data [29] and Aircloak’s
data [17] from the aggregate statistics released by these en-
tities exemplify this fundamental limitation. DP, while not
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immune to this limitation, provides a means of bounding the
reconstruction risk. DP randomizes the output of a query to
limit the influence of individual entries in the dataset on the
result. Each new DP query increases this limit, consuming
part of a global privacy budget that must not be exceeded,
lest individual entries become vulnerable to reconstruction.

Recent work proposed treating the global privacy budget as
a system resource that must be managed and conserved, simi-
lar to traditional resources like CPU [45]. When computation
is expensive, caching is a go-to solution: it uses past results
to save CPU on future computations. Caches are ubiquitous
in all computing systems – from the processor to operating
systems and databases – enabling scaling to much larger work-
loads than would otherwise be afforded with fixed resources.
In this paper, we thus ask: How should caching work in DP
systems to significantly increase the number of queries they
can support under a privacy guarantee? While DP theory has
explored algorithms to reuse past query results to save pri-
vacy budget in future queries, there is no general DP caching
system that is effective in common practical settings.

We propose Turbo, the first general and effective caching
layer for DP SQL databases that boosts the number of linear
queries (such as sums, averages, counts) that can be answered
accurately under a fixed, global DP guarantee. In addition to
incorporating a traditional exact-match cache that saves past
DP query results and reuses them if the same query reappears,
Turbo builds upon a powerful theoretical construct, known as
private multiplicative weights (PMW) [31], that leverages past
DP query results to learn a histogram representation of the
dataset that can go on to answer arbitrary future linear queries
for free once it has converged. While PMW has compelling
convergence guarantees in theory, we find it ineffective in
practice, being overrun even by an exact-match cache.

We make three main contributions to PMW design to boost
its effectiveness and applicability. First, we develop PMW-
Bypass, a variant of PMW that bypasses it during the privacy-
expensive learning phase of its histogram, and switches to
it once it has converged to reap its free-query benefits. This
change requires a new mechanism for updating the histogram
despite bypassing the PMW, plus new theory to justify its
convergence. The PMW-Bypass technique is highly effective,
significantly outperforming both the exact-match cache and
vanilla PMW in the number of queries it can support. Second,
we optimize our mechanisms for workloads of range queries
that do not access the entire database. These types of queries
are typical in timeseries databases and data streams. For such
workloads, we organize the cache as a tree of multiple PMW-
Bypass objects and demonstrate that this approach outper-
forms alternative designs. Third, for streaming workloads, we
develop warm-starting procedures for tree-structured PMW-
Bypass histograms, resulting in faster convergence.

We formally analyze each of our techniques, focusing on
privacy, per-query accuracy, and convergence speed. Each
technique represents a contribution on its own and can be

used separately, or, as we do in Turbo, as part of the first
general, effective, and accurate DP-SQL caching design. We
prototype Turbo on TimescaleDB, a timeseries database, and
use Redis to store caching state. We evaluate Turbo on work-
loads based on Covid and CitiBike datasets. We show that
Turbo significantly improves the number of linear queries
that can be answered with less than 5% error (w.h.p.) un-
der a global (10, 0)-DP guarantee, compared to not having
a cache and alternative cache designs. Our approach out-
performs the best-performing baseline in each workload by
1.7 to 15.9 times, and even more significantly compared to
vanilla PMW and systems with no cache at all (such as most
existing DP systems). These results demonstrate that our
Turbo cache design is both general and effective in boosting
workloads in DP SQL databases and streams, making it a
promising solution for companies like ABC that seek an ef-
fective DP SQL system to address their user data analysis and
sharing concerns. We make Turbo available open-source at
https://github.com/columbia/turbo, part of a broader set of
infrastructure systems we are developing for DP, all described
here: https://systems.cs.columbia.edu/dp-infrastructure.

2 Background
Threat model. We consider a threat model known as cen-
tralized differential privacy: one or more untrusted analysts
query a dataset or stream through a restricted, aggregate-only
interface implemented by a trusted database engine of which
Turbo is a trusted component. The goal of the database and
Turbo is to provide accurate answers to the analysts’ queries
without compromising the privacy of individual users in the
database. The two main adversarial goals that an analyst may
have are membership inference and data reconstruction. Mem-
bership inference is when the adversary wants to determine
whether a known data point is present in the dataset. Data
reconstruction involves reconstructing unknown data points
from a known subset of the dataset. To achieve their goals,
the adversary can use composition attacks to single out con-
tributions from individuals, collude with other analysts to
coordinate their queries, link anonymized records to public
datasets, and access arbitrary auxiliary information except for
timing side-channel information. Previous research demon-
strated attacks under this threat model [17, 21, 28, 29, 33, 52].
Differential privacy (DP). DP [25] randomizes aggregate
queries over a dataset to prevent membership inference and
data reconstruction [24, 61]. DP randomization (a.k.a. noise)
ensures that the probability of observing a specific result is
stable to a change in one datapoint (e.g., if user 𝑥 is removed
or replaced in the dataset, the distribution over results remains
similar). More formally, a query𝑄 is (𝜖, 𝛿)-DP if, for any two
datasets 𝐷 and 𝐷 ′ that differ by one datapoint, and for any
result subset 𝑆 we have: P(𝑄 (𝐷) ∈ 𝑆) ≤ 𝑒𝜖P(𝑄 (𝐷 ′) ∈ 𝑆) + 𝛿 .
𝜖 quantifies the privacy loss due to releasing the DP query’s
result (higher means less privacy), while 𝛿 can be interpreted
as a failure probability and is set to a small value.
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Two common mechanisms to enforce DP are the Laplace
and Gaussian mechanisms. They add noise from an appropri-
ately scaled Laplace/Gaussian distribution to the true query
result, and return the noisy result. As an example, for count-
ing queries and a database of size 𝑛, adding noise from
Laplace(0, 1/𝑛𝜖), ensures (𝜖, 0)-DP (a.k.a. pure DP); adding
noise from Gaussian(0,

√︁
2 ln(1.25/𝛿)/𝑛𝜖) ensures (𝜖, 𝛿)-DP.

The accuracy for such queries can be controlled probabilisti-
cally by converting it into the (𝜖, 𝛿) parameters.

Answering multiple queries on the same data fundamen-
tally degrades privacy [23]. DP quantifies this over a sequence
of DP queries using the composition property, which in its ba-
sic form states that releasing two (𝜖1, 𝛿1)-DP and (𝜖2, 𝛿2)-DP
queries is (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP. When queries access disjoint
data subsets, their composition is (max(𝜖1, 𝜖2),max(𝛿1, 𝛿2))-
DP and is called parallel composition. Using composition,
one can enforce a global (𝜖𝐺 , 𝛿𝐺 )-DP guarantee over a work-
load, with each DP query “consuming” part of a global pri-
vacy budget that is defined upfront as a system parameter [54].

Good values of the global privacy budget in interactive DP
SQL systems remain subject for debate [34], but generally, an
ideal value for strong theoretical guarantees is 𝜖𝐺 = 0.1, while
𝜖𝐺 = 1 are considered acceptable. Larger values are often
considered vacuous semantically, since individuals’ privacy
risk grows with 𝑒𝜖𝐺 . In this paper, we aim to achieve values
of 𝜖𝐺 = 1 or smaller over a query workload.
Private multiplicative weights (PMW). PMW is a DP mech-
anism to answer online linear queries with bounded error [31].
We defer detailed description of PMW, plus an example illus-
trating its functioning, to §4 and only give here an overview.
PMW maintains an approximation of the dataset in the form
of a histogram: estimated counts of how many times any pos-
sible data point appears in the dataset. When a query arrives,
PMW estimates an answer using the histogram and computes
the error of this estimate against the real data in a DP way,
using a DP mechanism called sparse vector (SV) [26] (de-
scribed shortly). If the estimate’s error is low, it is returned
to the analyst, consuming no privacy budget (i.e., the query
is answered “for free”). If the estimate’s error is large, then
PMW executes the DP query on the data with the Laplace/-
Gaussian mechanism, consuming privacy budget as needed. It
returns the DP result and also uses it to update the histogram
for more accurate estimates to future queries.

An additional cost in using PMW comes from the SV, a
well-known DP mechanism that can be used to test the error
of a sequence of query estimates against the ground truth with
DP guarantees and limited privacy budget consumption [26].
We refer the reader to textbook descriptions of SV for detailed
functioning [26] and provide here only an overview of its se-
mantics. SV is a stateful mechanism that receives queries and
estimates for their results one by one, and assesses the error
between these estimates and the ground-truth query results.
While the estimates have error below a preset threshold with

high probability, SV returns success and consumes zero pri-
vacy. However, as soon as SV detects a large-error estimate,
it requires a reset, which is a privacy-expensive operation that
re-initializes state within the SV to continue the assessments.
In common SV implementations, a reset costs as much as 3×
the privacy budget of executing one DP query on the data.

The theoretical vision of PMW is as follows. Under a
stream of queries, PMW first goes through a “training” phase,
where its histogram is inaccurate, requiring frequent SV re-
sets and consuming budget. Failed estimation attempts update
the histogram with low-error results obtained by running
the DP query. Once the histogram becomes sufficiently ac-
curate, the SV tests consistently pass, thereby ameliorating
the initial training cost. Theoretical analyses provide a com-
pelling worst-case convergence guarantee for the histogram,
determining a worst-case number of updates required to train
a histogram that can answer any future linear query with
low error [32]. However, no one has examined whether this
worst-case bound is practical and if PMW outperforms natural
baselines, such as an exact-match cache.

3 Turbo Overview
Turbo is a caching layer that can be integrated into a DP

SQL engine, significantly increasing the number of linear
queries that can be executed under a fixed, global (𝜖𝐺 , 𝛿𝐺 )-
DP guarantee. We focus on linear queries like sums, averages,
and counts (defined in §4), which are widely used in interac-
tive analytics and constitute the class of queries supported by
approximate databases such as BlinkDB [6]. These queries
enable powerful forms of caching like PMW, and also allow
for accuracy guarantees, which are important when doing
approximate analytics, as one does on a DP database.

3.1 Design Goals
In designing Turbo, we were guided by several goals:

(G1) Guarantee privacy: Turbo must satisfy (𝜖𝐺 , 𝛿𝐺 )-DP.
(G2) Guarantee accuracy: Turbo must ensure (𝛼, 𝛽)-accuracy

for each query, defined for 𝛼 > 0, 𝛽 ∈ (0, 1) as fol-
lows: if 𝑅′ and 𝑅 are the returned and true results, then
|𝑅′ − 𝑅 | ≤ 𝛼 with (1 − 𝛽) probability. If 𝛽 is small, a
result is 𝛼-accurate w.h.p. (with high probability).

(G3) and (G4) Provide worst-case convergence guarantees
but optimize for empirical convergence: We aim to
maintain PMW’s theoretical convergence (G3), but we
prioritize for empirical convergence speed, a new met-
ric that measures, on a workload, the number of updates
needed to answer most queries for free (G4).

(G5) Improve privacy budget consumption: We aim for sig-
nificant improvements in privacy budget consumption
compared to both not having a cache and having an
exact-match cache or a vanilla PMW.

(G6) Support multiple use cases: Turbo should benefit mul-
tiple important workload types, including static and
streaming databases, and queries that arrive over time.
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(G7) Easy to configure: Turbo should include few knobs
with fairly stable performance.

(G1) and (G2) are strict requirements. (G3) and (G4) are
driven by our belief that DP systems should not only pos-
sess meaningful theoretical properties but also be optimized
for practice. (G5) is our main objective. (G6) requires fur-
ther attention, given shortly. (G7) is driven by the limited
guidance from PMW literature on parameter tuning. PMW
meets goals (G1-G3) but falls significantly short for (G4-G7).
Turbo achieves all goals; we provide theoretical analyses for
(G1-G3) in §4 and empirical evaluations for (G4-G7) in §5.

3.2 Use Cases
The DP literature is fragmented, with different algorithms

developed for different use cases. We seek to create a general
system that supports multiple settings, highlighting three here:
(1) Non-partitioned databases are the most common use
case in DP. A group of untrusted analysts issue queries over
time against a static database, and the database owner wishes
to enforce a global DP guarantee. Turbo should allow a larger
workload of queries compared to existing approaches.
(2) and (3) Partitioned databases are less frequently inves-
tigated in DP theory literature, but important to distinguish
in practice [50, 57]. When queries tend to access different
data ranges, it is worth partitioning the data and account-
ing for consumed privacy budget in each partition separately
through DP’s parallel composition. This lowers privacy bud-
get consumption in each partition and permits more non- or
partially-overlapping queries against the database. This kind
of workload is inherent in timeseries and streaming databases,
where analysts typically query the data by windows of time,
such as how many new Covid cases occurred in the week
after a certain event, or what is the average age of positive
people over the past week. We distinguish two cases:

(2) Partitioned static database, where the database is
static and partitioned by an attribute that tends to be accessed
in ranges, such as time, age, or geo-location. All partitions
are available at the beginning. Queries arrive over time and
most are assumed to run on some range of interest, which
can involve one or more partitions. Turbo should provide
significant benefit not only compared to the baseline caching
techniques, but also compared to not having partitioning.

(3) Partitioned streaming database, where the database
is partitioned by time and partitions arrive over time. In such
workloads, queries tend to run continuously as new data be-
comes available. Hence, new partitions see a similar query
workload as preceding partitions. Turbo should take advan-
tage of this similarity to further conserve privacy.

For all three use cases, we aim to support online workloads
of queries that are not all known upfront. As §7 reviews, most
works on optimizing global privacy budget consumption oper-
ate in the offline setting, where all queries are known upfront.
For that setting, algorithms are known to answer all queries
simultaneously with optimal use of privacy budget. However,
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Fig. 1. Turbo architecture.

this setting is unrealistic for real use cases, where analysts
adapt their queries based on previous results, or issue new
queries for different analyses. In such cases, which corre-
spond to the online setting, we require adaptive algorithms
that accurately answer queries on-the-fly. Turbo does this by
making effective use of PMW, as we next describe.
3.3 Turbo Architecture

Fig. 1 shows the Turbo architecture. It is a caching layer
that can be added to a DP SQL engine, like GoogleDP [62],
Uber Chorus [36], or Tumult Analytics [12], to boost the num-
ber of linear queries that can be answered accurately under
a fixed global DP guarantee. The filled components indicate
our additions to the DP SQL engine, while the transparent
components are standard in DP SQL engines. Here is how a
typical DP SQL engine works without Turbo. Analysts issue
queries against the engine, which is trusted to enforce a global
(𝜖𝐺 , 𝛿𝐺 )-DP guarantee. The engine executes the queries using
a DP query executor, which adds noise to query results with
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the Laplace/Gaussian mechanism and consumes a part of the
global privacy budget. A budget accountant tracks the con-
sumed budget; when it runs out, the DP SQL engine either
stops responding to new queries (as do Chorus and Tumult
Analytics) or sacrifices privacy by “resetting” the budget (as
does LinkedIn Audience Insights). We assume the former.

Turbo intercepts the queries before they go into the DP
query executor and performs a very proactive form of caching
for them, reusing prior results as much as possible to avoid
consuming privacy budget for new queries. Turbo’s architec-
ture is organized in two types of components: caching objects
(denoted in light-orange background in Fig. 1) and functional
components that act upon them (denoted in grey background).
Caching objects. Turbo maintains several types of caching
objects. First, the Exact-Cache stores previous queries and
their DP results, allowing for direct retrieval of the result
without consuming any privacy budget when the same query
is seen again on the same database version. Second, the PMW-
Bypass is an improved version of PMW that reduces privacy
budget consumption during the training phase of its histogram
(§4.3). Given a query, PMW-Bypass uses an effective heuris-
tic to judge whether the histogram is sufficiently trained to
answer the query accurately; if so, it uses it, thereby spending
no budget. Critically, PMW-Bypass includes a mechanism to
externally update the histogram even when bypassing it, to
continue training it for future, free-budget queries.

Turbo aims to enable parallel composition for workloads
that benefit from it, such as timeseries or streaming workloads,
by supporting database partitioning. In theory, partitions could
be defined by attributes with public values that are typically
queried by range, such as time, age, or geo-location. In this
paper, we will focus on partitioning by time. Turbo uses a
tree-structured PMW-Bypass caching object, consisting of
multiple histograms organized in a binary tree, to support
linear range queries over these partitions effectively (§4.4).
This approach conserves more privacy budget and enables
larger workloads to be run when queries access only subsets
of the partitions, compared to alternative methods.
Functional components. When Turbo receives a linear query
through the DP SQL engine’s query parser, it applies its
caching objects to the query. If the database is partitioned,
Turbo splits the query into multiple sub-queries based on
the available tree-structured caching objects. Each sub-query
is first passed through an Exact-Cache, and if the result
is not found, it is forwarded to a PMW-Bypass, which se-
lects whether to execute it on the histogram or through di-
rect Laplace/Gaussian. For sub-queries that can leverage his-
tograms, the answer is supplied directly without execution or
budget consumption. For sub-queries that require execution
with Laplace/Gaussian, the (𝜖, 𝛿) parameters for the mecha-
nism are computed based on the (𝛼, 𝛽) accuracy parameters,
using the “calibrate (𝜖, 𝛿) for (𝛼, 𝛽)” functional component
in Fig. 1. Then, each sub-query and its privacy parameters are
passed to the DP query executor for execution.

Turbo combines all sub-query results obtained from the
caching objects to form the final result, ensuring that it is
within 𝛼 of the true result with probability 1 − 𝛽 (functional
component “combine results”). New results computed with
fresh noise are used to update the caching objects (func-
tional component “update histograms and Exact-Caches”).
Additionally, Turbo includes cache management functional-
ity, such as “warm-start of histograms,” which reuses trained
histograms from previous partitions to warm-start new his-
tograms when a new partition is created (§4.5).

4 Detailed Design
We next detail the novel caching objects and mechanisms

in Turbo, using different use cases from §3.2 to illustrate
each concept. We describe PMW-Bypass in the static, non-
partitioned database, then introduce partitioning for the tree-
structured PMW-Bypass, followed by the addition of stream-
ing to discuss warm-start procedures. We focus on the Laplace
mechanism and basic composition, thus only discussing pure
(𝜖, 0)-DP and ignoring 𝛿 . We also assume 𝛽 is small enough
for Turbo results to count as 𝛼-accurate w.h.p. Appendix A.6
extends all our theoretical results to (𝜖, 𝛿)-DP, non-zero 𝛽 , the
Gaussian mechanism, and Rényi composition; in theory, all
these should help to further conserve privacy budget, so we
speculate they will be important for practice, but we leave
their implementation and evaluation for future work.

4.1 Notation
Our algorithms require some notation. Given a data domain
X, a database 𝑥 with 𝑛 rows can be represented as a histogram
ℎ ∈ NX as follows: for any data point 𝑣 ∈ X, ℎ(𝑣) denotes
the number of rows in 𝑥 whose value is 𝑣 . ℎ(𝑣) is the bin
corresponding to value 𝑣 in the histogram. We denote 𝑁 = |X|
the size of the data domain and 𝑛 the size of the database.
When X has the form {0, 1}𝑑 , we call 𝑑 the data domain
dimension. Example: a database with 3 binary attributes has
domain X = {0, 1}3 of dimension 𝑑 = 3 and size 𝑁 = 8;
ℎ(0, 0, 1) is the number of rows that are equal to (0, 0, 1). §4.2
exemplifies a database, its dimensions, and its histogram.

We define linear queries as SQL queries that can be trans-
formed or broken into the following form:

SELECT AVG(*) FROM ( SELECT q(A, B, C, ...) FROM Table ),

where q takes 𝑑 arguments (one for each attribute of Table,
denoted 𝐴, 𝐵,𝐶, ...) and outputs a value in [0, 1]. When q has
values in {0, 1}, a query returns the fraction of rows satisfying
predicate q. To get raw counts, we multiply by 𝑛, which we
assume is public information. PMW (and hence Turbo) is de-
signed to support only linear queries. Examples of non-linear
queries are: maximum, minimum, percentiles, top-k.

4.2 Running Example
Fig. 2 gives a running example inspired by our evalua-

tion Covid dataset. Analysts run queries against a database
consisting of Covid test results over time. Fig. 2(a) shows a
simplified version of the database, with only three attributes:
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Time (T) Positive (P) Age Bracket (A)

02/01/21 0 0 (1-17)

02/01/21 1 1 (18-49)

02/02/21 1 2 (50-64)

02/02/21 1 3 (65+)

… say n=100 total rows …

(a) “Covid” table:

(c) Histogram state after executing Q1, then Q2:

(b) Previously executed queries:

Q1: SELECT COUNT(*) FROM Covid 
         WHERE Positive=1

Q2: SELECT COUNT(*) FROM Covid
         WHERE AgeBracket=0

Format:  h(p,a): default-bin-value->value-after-Q1->value-after-Q2 (current value)
                  real: real value of the histogram bin (no DP, included as reference for h(v))
                     c: number of purposeful updates to the histogram bin

A = 0 A = 1 A = 2 A = 3

P = 0 h(0,0): 12.5->18.3->8
(real: 13)         c: 1

h(0,1): 12.5->18.3->21.7
(real: 27)             c: 0

h(0,2): 12.5->18.3->21.7
(real: 15)             c: 0

h(0,3): 12.5->18.3->21.7
(real: 25)               c: 0

P = 1 h(1,0): 12.5->6.7->2.9
(real: 3)           c: 2

h(1,1): 12.5->6.7->8
(real: 5)               c: 1

h(1,2): 12.5->6.7->8
(real: 8)               c: 1

h(1,3): 12.5->6.7->8
(real: 4)                 c: 1

(d) Next query to execute:
Q3: SELECT COUNT(*) FROM Covid WHERE Positive=1 AND AgeBracket=0

Fig. 2. Running example. (a) Simplified Covid tests dataset with 𝑛 = 100
rows and data domain size 𝑁 = 8 for the two non-time attributes, test
outcome 𝑃 and subject’s age bracket 𝐴. (b) Two queries that were previously
run. (c) State of the histogram as queries are executed. (d) Next query to run.

the test’s date, T; the outcome, P, which can be 0 or 1 for
negative/positive; and subject’s age bracket, A, with one of
four values as in the figure. The database could be either static
or actively streaming in new test data. Initially, we assume it
static and ignore the T attribute. Our example database has
𝑛 = 100 rows and data domain size 𝑁 = 8 for P and A.

Fig. 2(b) shows two queries that were previously executed.
While queries in Turbo return the fraction of entries satisfy-
ing a predicate, for simplicity we show raw counts. 𝑄1 re-
quests the positivity rate and 𝑄2 the fraction of tested minors.
Fig. 2(c) illustrates the histogram representation correspond-
ing to the dataset, as estimated by the PMW algorithm, whose
execution we discuss shortly. Fig. 2(d) shows the next query
that will be executed, 𝑄3, requesting the fraction of positive
minors. 𝑄3 is not identical to either 𝑄1 or 𝑄2, but it is cor-
related with both, as it accesses data that overlaps with both
queries. Thus, while neither 𝑄1’s nor 𝑄2’s DP results can be
used to directly answer 𝑄3, intuitively, they both should help.
That is the insight that PMW (and PMW-Bypass) exploits
through its query-by-query build-up of a DP histogram repre-
sentation of the database that becomes increasingly accurate
in bins that are accessed by more queries.

Fig. 2(c) shows the state of the histogram after executing
𝑄1 and𝑄2 but before executing𝑄3. Each bin in the histogram
stores an estimation of the number of rows equal to (𝑝, 𝑎).
This is the ℎ(𝑝, 𝑎) field in the figure, for which we show the
sequence of values it has taken following updates due to 𝑄1
and 𝑄2. Initially, ℎ(𝑝, 𝑎) in all bins is set assuming a uni-
form distribution over 𝑃 × 𝐴; in this case the initial value
was 𝑛/𝑁 = 12.5. The figure also shows the real (non-private)
count for each bin (denoted real), which is not part of the
histogram, but we include it as a reference. As queries are
executed, ℎ(𝑝, 𝑎) values are updated with DP results, depend-
ing on which bins are accessed. 𝑄1 and 𝑄2 have already
been executed, and both are assumed to have resorted to the

Laplace mechanism, so they both contributed DP results to
specific bins (we specify the update algorithm later when
discussing Alg. 1). 𝑄1 accessed, and hence updated, data in
the 𝑃 = 1 bins (the bottom row of the histogram). 𝑄2 did so
in the 𝐴 = 0 bins (the left column of the histogram). Through
a renormalization step, t hese queries have also changed the
other bins, though not necessarily in a query-informed way.
The 𝑐 variable in each bin shows the number of queries that
have purposely updated that bin. We can see that estimates
in the 𝑐 > 0 bins are a bit more accurate compared to those
in the 𝑐 = 0 bins. The only bin that has been updated twice
is (𝑃 = 1, 𝐴 = 0), as it lies at the intersection of both queries;
that bin has diverged from its neighboring, singly-updated
bins and is getting closer to its true value. (Bin (𝑃 = 1, 𝐴 = 2),
updated only once, is even more accurate purely by chance.)

Our last query, 𝑄3, which accesses (𝑃 = 1, 𝐴 = 0), may
be able to leverage its estimation “for free,” assuming the
estimation’s error is within 𝛼 w.h.p. Assessing that the error
is within 𝛼 – privately, and without consuming privacy budget
if it is – is the purview of the SV mechanism incorporated in
a PMW. The catch is that the SV consumes privacy budget, in
copious amounts, if this test fails. This is what makes vanilla
PMW impractical, a problem that we address next.

4.3 PMW-Bypass
PMW-Bypass addresses practical inefficiencies of PMW,

which we illustrate with simple demonstration.
Demo experiment. Using a four-attribute Covid dataset with
domain size 128 (so a bit larger than in our running exam-
ple), we generate a query pool of over 34K unique queries
by taking all possible combinations of values over the four
attributes. From this pool, we sample uniformly with replace-
ment 35K queries to form a workload; there is therefore some
identical repetition of queries but not much. This workload is
not necessarily realistic, but it should be an ideal showcase
for PMW: there are many unique queries relative to the small
data domain size (giving the PMW ample chance to train),
and while most queries are unique, they tend to overlap in the
data they touch (giving the PMW ample chance to reuse infor-
mation from previous queries). We evaluate the cumulative
privacy budget spent as queries are executed, comparing the
case where we execute them through PMW vs. directly with
Laplace, with and without an exact-match cache.
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Fig. 3. Demo experiment.

Fig. 3 shows the
results. As expected
for this workload,
the PMW works,
as it converges af-
ter roughly the first
10K queries and con-
sumes very little
budget afterwards.
However, before con-
verging, the PMW consumes enormous budget. In contrast,
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Fig. 4. PMW-Bypass. New components over vanilla PMW are in blue/bold.

direct execution through Laplace grows linearly, but more
slowly compared to PMW’s beginning. The PMW eventually
becomes better than Laplace, but only after ≈ 27𝐾 queries.

Moreover, if instead of always executing with Laplace, we
trivially cached the results in an exact-match cache for future
reuse if the same query reappeared – a rare event in this work-
load – then the PMW would never become notably better than
this simple baseline! This happens for a workload that should
be ideal for PMW. §5 shows that for other workloads, less
favorable for PMW but more realistic, the outcome persists:
PMWs underperform even the simplest baselines in practice.

We propose PMW-Bypass, a re-design for PMWs that re-
leases their power and makes them very effective. We make
multiple changes to PMWs, but the main one involves by-
passing the PMW while it is training (and hence expensive)
and instead executing directly with Laplace (which is less
expensive). Importantly, we do this while still updating the
histogram with the Laplace results so that eventually the
PMW becomes good enough to switch to it and reap its zero-
privacy query benefits. The PMW-Bypass line in Fig. 3 shows
just how effective this design is in our demo experiment:
PMW-Bypass follows the low, direct-Laplace curve instead
the PMW’s up until the histogram converges, after which it
follows the flat shape of PMW’s convergence line. In this ex-
periment, as well as in others in §5, the outcome is the same:
our changes make PMWs very effective. We thus believe that
PMW-Bypass should replace PMW in most settings where
the latter is studied, not just in our system’s design.
PMW-Bypass. Fig. 4 shows the functionality of PMW-Bypass,
with the main changes shown in blue and bold. Without our
changes, a vanilla PMW works as follows. Given a query
𝑄 , PMW first estimates its result using the histogram (𝑅1)
and then uses the SV protocol to test whether it is 𝛼-accurate
w.h.p. The test involves comparing 𝑅1 to the exact result of
the query executed on the database. If a noisy version of the
absolute error between the two is within a threshold comfort-
ably far from 𝛼 , then 𝑅1 is considered accurate w.h.p. and
outputted directly. This is the good case, because the query
need not consume any privacy. The bad case is when the SV
test fails. First, the query must be executed directly through

Laplace, giving a result 𝑅2, whose release costs privacy. But
beyond that, the SV must be reset, which consumes privacy.
In total, if the Laplace execution costs 𝜖, then releasing 𝑅2
costs 4 ∗ 𝜖! This is what causes the extreme privacy consump-
tion during the training phase for vanilla PMW, when the SV
test mostly fails. Still, in theory, after paying handsomely for
this histogram “miss,” 𝑅2 can be used to update the histogram
(the arrow denoted “update (R2)” in Fig. 4), in hopes that
future correlated queries “hit” in the histogram.

PMW-Bypass adds three components to PMW: (1) a heuris-
tic that assesses whether the histogram is likely ready to an-
swer 𝑄 with the desired accuracy; (2) a bypass branch, taken
if the histogram is deemed not ready and direct query ex-
ecution with Laplace instead of going through (and likely
failing) the SV test; and (3) an external update procedure that
updates the histogram with the bypass branch result. Given𝑄 ,
PMW-Bypass first consults the heuristic, which only inspects
the histogram, so its use is free. Two cases arise:

Case 1: If the heuristic says the histogram is ready to an-
swer Q with 𝛼-accuracy w.h.p., then the PMW is used, 𝑅1 is
generated, and the SV is invoked to test 𝑅1’s actual accuracy.
If the heuristic’s assessment was correct, then this test will
succeed, and hence the free, 𝑅1 output branch will be taken.
Of course, no heuristic that lacks access to the raw data can
guarantee that 𝑅1 will be accurate enough, so if the heuristic
was actually wrong, then the SV test will fail and the expen-
sive 𝑅2 path is taken. Thus, a key design question is whether
there exist heuristics good enough to make PMW-Bypass ef-
fective. We discuss heuristic designs below, but the gist is that
simple and easily tunable heuristics work well, enabling the
significant privacy budget savings in Fig. 3.

Case 2: If the heuristic says the histogram is not ready to
answer Q with 𝛼-accuracy w.h.p., then the bypass branch is
taken and Laplace is invoked directly, giving result 𝑅3. Now,
PMW-Bypass must pay for Laplace, but because it bypassed
the PMW, it does not risk an expensive SV reset. A key design
question here is whether we can still reuse 𝑅3 to update the
histogram, even though we did not, in fact, consult the SV
to ensure that the histogram is truly insufficiently trained for
Q. We prove that performing the same kind of update as the
PMW would do, from outside the protocol, would break its
theoretical convergence guarantee. Thus, for PMW-Bypass,
we design an external update procedure that can be used to
update the histogram with 𝑅3 while preserving the PMW’s
worst-case convergence, albeit at slower speed.
Heuristic ISHISTOGRAMREADY. One option to assess if a
histogram is ready to answer a query accurately is to check if
it has received at least𝐶 updates, for some global threshold𝐶.
However, this approach is often imprecise as it fails to detect
histogram regions that might still be untrained. Thus, we use
a separate threshold value per bin, raising the question of how
to configure all these thresholds. To keep configuration easy
(goal (G6)), we use an adaptive per-bin threshold. For each
bin, we initialize its threshold𝐶 with a value𝐶0 and increment
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Algorithm 1 PMW-Bypass algorithm.

1: Cfg.: PRIVACYACCOUNTANT, HEURISTIC, accuracy params (𝛼, 𝛽 ) ,
histogram convergence params lr, 𝜏 , database DATA with 𝑛 rows.

2: function UPDATE(ℎ,𝑞, 𝑠)
3: Update estimated values: ∀𝑣 ∈ X, 𝑔 (𝑣) ← ℎ (𝑣)𝑒𝑠∗𝑞 (𝑣)
4: Renormalize: ∀𝑣 ∈ X, ℎ (𝑣) ← 𝑔 (𝑣)/∑𝑤∈X 𝑔 (𝑤 )
5: return ℎ
6: function CALIBRATEBUDGET(𝛼, 𝛽)
7: return 4 ln(1/𝛽 )

𝑛𝛼

8: Initialize histogram ℎ to uniform distribution on X
9: 𝜖 ← CALIBRATEBUDGET (𝛼, 𝛽 )

10: PRIVACYACCOUNTANT.PAY (3 · 𝜖 ) // Pay to initialize first SV
11: while PRIVACYACCOUNTANT.HASBUDGET() do
12: 𝛼 ← 𝛼/2 + Lap(1/𝜖𝑛) // SV reset
13: 𝑆𝑉 ← NOTCONSUMED

14: while 𝑆𝑉 == NOTCONSUMED do
15: Receive next query 𝑞
16: if HEURISTIC.ISHISTOGRAMREADY (ℎ,𝑞, 𝛼, 𝛽 ) then
17: // Regular PMW branch:
18: if |𝑞 (DATA) − 𝑞 (ℎ) | + Lap(1/𝜖𝑛) < 𝛼 then // SV test
19: Output 𝑅1 = 𝑞 (ℎ) →R1, pay nothing
20: else
21: PRIVACYACCOUNTANT.PAY (4 ∗ 𝜖 ) → R2, pay for
22: Output 𝑅2 = 𝑞 (DATA) + Lap(1/𝜖𝑛) Laplace, SV
23: // Update histogram (R2):

24: 𝑠 ←
{

lr if 𝑅2 > 𝑞 (ℎ)
−lr if 𝑅2 < 𝑞 (ℎ)

25: ℎ ← UPDATE (ℎ,𝑞, 𝑠 )
26: 𝑆𝑉 ← CONSUMED // force SV reset
27: HEURISTIC.PENALIZE (𝑞,ℎ)
28: else
29: // Bypass branch:
30: PRIVACYACCOUNTANT.PAY (𝜖 ) → R3, pay for
31: Output 𝑅3 = 𝑞 (DATA) + Lap(1/𝜖𝑛) Laplace
32: // External update of histogram (R3):

33: 𝑠 ←


lr if 𝑅3 > 𝑞 (ℎ) + 𝜏𝛼
−lr if 𝑅3 < 𝑞 (ℎ) − 𝜏𝛼
0 otherwise // no updates if we’re not confident!

34: ℎ ← UPDATE (ℎ,𝑞, 𝑠 )

𝐶 by an additive step 𝑆0 every time the heuristic errs (i.e.,
predicts it is ready when it is in fact not ready for that query).
While the threshold is too small, the heuristic gets penalized
until it reaches a threshold high enough to avoid mistakes. For
queries that span multiple bins, we only penalize the least-
updated bins to prevent a single, inaccurate bin from setting
back the histogram from queries using accurate bins only.
With these thresholds, we only configure initial parameters
𝐶0 and 𝑆0, which we find experimentally easy to do (§5.2).
External updates. While we want to bypass the PMW when
the histogram is not “ready” for a query, we still want to up-
date the histogram with the result from the Laplace execution
(R3); otherwise, the histogram will never get trained. That is
the purpose of our external updates (lines 33-34 in Alg. 1).
They follow a similar structure as a regular PMW update
(lines 24-25 in Alg. 1), with a key difference. In vanilla PMW,
the histogram is updated with the result 𝑅2 from Laplace

only when the SV test fails. In that case, PMW updates the
relevant bins in one direction or another, depending on the
sign of the error 𝑅2 − 𝑞(ℎ). For example, if the histogram is
underestimating the true answer, then R2 will likely be higher
than the histogram-based result, so we should increase the
value of the bins (case 𝑅2 > 𝑞(ℎ) of line 24 in Alg. 1).

In PMW-Bypass, external updates are performed not just
when the authoritative SV test finds the histogram estimation
inaccurate, but also when our heuristic predicts it to be inaccu-
rate even though it may actually be accurate. In the latter case,
performing external updates in the same way as PMW updates
would add bias into the histogram and forfeit its convergence
guarantee. To prevent this, in PMW-Bypass, external updates
are executed only when we are quite confident, based on the
direct-Laplace result 𝑅3, that the histogram overestimates or
underestimates the true result. Line 33 shows the change: the
term 𝜏𝛼 is a safety margin that we add to the comparison be-
tween the histogram’s estimation and 𝑅3, to be confident that
the estimation is wrong and the update warranted. This lets
us prove worst-case convergence akin to PMW. Finally, like
regular PMW updates, external updates reuse the already DP
result 𝑅3, hence they do not consume any additional privacy
budget beyond what was already consumed to generate 𝑅3.
Learning rate. In addition to the bypass option, we make
another key change to PMW design for practicality. When
updating a bin, we increase or decrease the bin’s value based
on a learning rate parameter, lr, which determines the size of
the update step taken (line 3 in Alg. 1). Prior PMW works
fix learning rates that minimize theoretical convergence time,
typically 𝛼/8 [58]. However, our experiments show that larger
values of lr can lead to much faster convergence, as dozens of
updates may be needed to move a bin from its uniform prior
to an accurate estimation. However, increasing lr beyond a
certain point can impede convergence, as the updates become
too coarse. Taking cue from deep learning, PMW-Bypass uses
a scheduler to adjust 𝑙𝑟 over time. We start with a high lr and
progressively reduce it as the histogram converges.
Guarantees. (G1) Privacy: PMW-Bypass preserves 𝜖𝐺 -DP
across the queries it executes (Thm. A.1). (G2) Accuracy:
PMW-Bypass is 𝛼-accurate with 1 − 𝛽 probability for each
query (Thm. A.3). This property stems from how we calibrate
Laplace budget 𝜖 to 𝛼 and 𝛽. This is function CALIBRATEBUDGET

in Alg. 1 (lines 6-7). For 𝑛 datapoints, setting 𝜖 =
4 ln(1/𝛽 )
𝑛𝛼

ensures that each query is answered with error at most 𝛼 with
probability 1 − 𝛽. (G3) Worst-case convergence: If lr/𝛼 <

𝜏 ≤ 1/2, then w.h.p. PMW-Bypass needs to perform at most
ln |X |

lr(𝜏𝛼−lr)/2 updates (Thm. A.4). PMW-Bypass’s worst-case
convergence is thus similar to PMW’s, but roughly 1/2𝜏 times
slower. §5.2 confirms this empirically.

4.4 Tree-Structured PMW-Bypass
We now switch to the partitioned-database use cases, fo-

cusing on time-based partitions, as in timeseries databases,
whether static or dynamic. Rather than accessing the entire
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Fig. 5. Example of tree-structured histograms.

database, analysts tend to query specific time windows, such
as requesting the Covid positivity rate over the past week,
or the fraction of minors diagnosed with Covid in the two
weeks following school reopening. This allows the opportu-
nity to leverage DP’s parallel composition: the database is
partitioned by time (say a week’s data goes in one partition),
and privacy budget is consumed at the partition level. Queries
can run at finer or coarser granularity, but they will consume
privacy against the partition(s) containing the requested data.
With this approach, a system can answer more queries under a
fixed global (𝜖𝐺 , 𝛿𝐺 )-DP guarantee compared to not partition-
ing [40, 45, 50, 56]. We implement support for partitioning
and parallel composition in Turbo through a new caching
object called a tree-structured PMW-Bypass.
Example. Fig. 5 shows an extension of the running example
in §4.2, with the database partitioned by week. Denote 𝑛𝑖 the
size of each partition. A new query, 𝑄 , asks for the positivity
rate over the past three weeks. How should we structure the
histograms we maintain to best answer this query? One option
would be to maintain one histogram per partition (i.e., just the
leaves in the figure). To resolve 𝑄 , we query the histograms
for weeks 2, 3, 4. Assume the query results in an update.
Then, we need to update histograms, computing the answer
with DP within our 𝛼 error tolerance. Updating histograms
for weeks 2, 3, and 4 requires querying the result for each of
them with parallel composition. Given that Laplace(1/𝑛𝜖) has
standard deviation

√
2/𝑛𝜖, for week 4 for instance, we need

noise scaled to 1/𝑛4𝜖. Thus, we consume a fairly large 𝜖 for
an accurate query to compensate for the smaller 𝑛4. Another
option would be to use one histogram per range (i.e. set of
contiguous partitions), but that involves maintaining a large
state that grows quadratically in the number of partitions.

Instead, our approach is to maintain a binary-tree-structured
set of histograms, as shown in Fig. 5. For each partition, but
also for a binary tree growing from the partitions, we maintain
a separate histogram. To resolve 𝑄 , we split the query into
two sub-queries, one running on the histogram for week 2
([2,2]) and the other running on the histogram for the range
week 3 to week 4 ([3,4]). That last sub-query would then run
on a larger dataset of size 𝑛3 + 𝑛4, requiring a smaller budget
consumption to reach the target accuracy.
Design. Fig. 6 shows our design. Given a query 𝑄 , we split
it into sub-queries based on the histogram tree, applying the
min-cuts algorithm to find the smallest set of nodes in the tree
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Fig. 6. Tree-structured PMW-Bypass.

that covers the requested partitions. In our example, this gives
two sub-queries, 𝑄 ′ and 𝑄 ′′, running on histograms [2,2] and
[3,4], respectively. For each sub-query, we use our heuristic
to decide whether to use the histogram or invoke Laplace
directly. If both histograms are “ready,” we compute their
estimations and combine them into one result, which we test
with an SV against an accuracy goal. In our example, there
are only two sub-queries, but in general there can be more,
some of which will use Laplace while others use histograms.
We adjust the SV’s accuracy target to an (𝛼𝑆𝑉 , 𝛽𝑆𝑉 ) calibrated
to the aggregation that we will need to do among the results of
these different mechanisms. We pay for any Laplace’s and SV
resets against the queried data partitions and finally combine
Laplace results with histogram-based results. Each subquery
updates the corresponding histograms of the tree (details in
Alg. 2) and increments 𝑐 for updated nodes.
Guarantees. (G1) Privacy and (G2) accuracy are unchanged
(Thm. A.5, A.6). (G3) Worst-case convergence: For 𝑇 par-
titions, if lr/𝛼 < 𝜏 ≤ 1/2, then w.h.p. we perform at most
2𝑇 ( ⌈log𝑇 ⌉+1) ln |X |

[ (𝜏𝛼−[ )/2 updates (Thm. A.8).

4.5 Histogram Warm-Start
An opportunity exists in streams to warm-start histograms

from previously trained ones to converge faster. Prior work on
PMW initialization [44] only justifies using a public dataset
close to the private dataset to learn a more informed initial
value for histogram bins than a uniform prior. We prove that
warm-starting a histogram by copying an entire, trained his-
togram preserves the worst-case convergence. In Turbo, we
use two procedures: for new leaf histograms, we copy the
previous partition’s leaf node; for non-leaf histograms, we
take the average of children histograms. We also initialize the
per-bin thresholds and update counters of each node.
Guarantees. (G1) Privacy and (G2) accuracy guarantees
are unchanged. (G3) Worst-case convergence: If there exists
_ ≥ 1 such that the initial histogram ℎ0 in Alg. 1 satisfies
∀𝑥 ∈ X, ℎ0 (𝑥) ≥ 1

_ |X | , then we show that each PMW-Bypass
converges, albeit at a slower pace (Thm. A.9). The same
properties hold for the tree.
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5 Evaluation
We prototype Turbo using TimescaleDB as the underlying

database and Redis for storing the histograms and exact-cache.
Using two public timeseries datasets – Covid and CitiBike –
we evaluate Turbo in the three use cases from §3.2. Each use
case lets us do system-wide evaluation, answering the critical
question: Does Turbo significantly improve privacy budget
consumption compared to reasonable baselines for each use
case? This corresponds to evaluating our §3.1 design goals
(G5) and (G6). In addition, each setting lets us evaluate a
different set of caching objects and mechanisms:
(1) Non-partitioned database: We configure Turbo with a
single PMW-Bypass and Exact-Cache, letting us evaluate the
PMW-Bypass object, including its empirical convergence and
the impact of its heuristic and learning rate parameters.
(2) Partitioned static database: We partition the datasets by
time (one partition per week) and configure Turbo with the
tree-structured PMW-Bypass and Exact-Cache. This lets us
evaluate the tree-structured cache.
(3) Partitioned streaming database: We configure Turbo
with the tree-structured PMW-Bypass, Exact-Cache, and his-
togram warm-up, letting us evaluate warm-up.

As highlighting, our results show that PMW-Bypass un-
leashes the power of PMW, enhancing privacy budget con-
sumption for linear queries well beyond the conventional
approach of using an exact-match cache (goal (G5)). More-
over, Turbo as a whole seamlessly applies to multiple set-
tings, with its novel tree-structured PMW-Bypass structure
scoring significant benefit for timeseries workloads where
database can be partitioned to leverage parallel composition
(goal (G6)). Configuration of our objects and mechanisms
is straightforward (goal (G7)), and we tune them based on
empirical convergence rather than theoretical convergence,
boosting their practical effectiveness (goal (G4)). Finally, we
provide a basic runtime and memory evaluation, which shows
that while Turbo performs reasonably for our datasets, further
research is needed for larger-domain data.

5.1 Methodology
For each dataset, we create query workloads by (1) generat-

ing a pool of linear queries and (2) sampling queries from this
pool based on a Zipfian distribution. Covid uses a completely
synthetic query pool. CitiBike uses a pool based on real-user
queries from prior CitiBike analyses. We use the former as a
microbenchmark, the latter as a macrobenchmark.
Covid. Dataset: We take a California dataset of Covid-19
tests from 2020 that provides daily aggregate information of
the number of Covid tests and their positivity rates for various
demographic groups defined by age × gender × ethnicity. We
combine this data with US Census data to generate a synthetic
dataset that contains 𝑛 = 50, 426, 600 per-person test records,
each with the date and four attributes: positivity, age, gender,
and ethnicity. These attributes have domain sizes of 2, 4, 2
and 8, respectively, so the dataset domain size is 𝑁 = 128.

The dataset spans 50 weeks, so in partitioned use cases we
have up to 50 partitions. Query pool: We create a synthetic
and rich pool of correlated queries comprising all possible
count queries that can be posed on Covid. This gives 34, 425
unique queries, plenty for us to microbenchmark Turbo.
CitiBike. Dataset: We take a dataset of NYC bike rentals
from 2018-2019, which includes information about individ-
ual rides, such as start/end date, start/end geo-location, and
renter’s gender and age. The original data is too granular
with 4,000 geo-locations and 100 ages, making it impractical
for PMWs. Since all the real-user analyses we found con-
sider the data at coarser granularity (e.g. broader locations
and age brackets), we group geo-locations into ten neighbor-
hoods and ages into four brackets. This yields a dataset with
𝑛 = 21, 096, 261 records, domain size 𝑁 = 604, 800, and span-
ning 50 weeks. Query pool: We collect a set of pre-existing
CitiBike analyses created by various individuals and made
available on Public Tableau [2]. An example is here [1]. We
extract 30 distinct queries, most containing ‘GROUP BY’
statements that we decompose into multiple primitive queries
that can interact with Turbo histograms. This gives us a pool
of 2, 485 queries, which is smaller than Covid’s but more
realistic and suitable as a macrobenchmark.
Workload generation. As is customary in caching litera-
ture [8, 18, 63], we use a Zipfian distribution to control the
skewness of query distribution, which affects hit rates in the
exact-match cache. From a pool of 𝑄 queries, a query of
type 𝑥 ∈ [1, 𝑄] is sampled with probability ∝ 𝑥−𝑘zipf , where
𝑘zipf ≥ 0 is the parameter that controls skewness. We evaluate
with several 𝑘zipf values but report only results for 𝑘zipf = 0
(uniform) and 𝑘zipf = 1 (skewed) for Covid. For CitiBike, we
evaluate only for 𝑘zipf = 0 to avoid reducing the small query
pool further with skewed sampling. For streaming, queries
arrive online with arrival times following a Poisson process;
they request a window of certain size over recent timestamps.
Metrics. • Average cumulative budget: the average budget
consumed across all partitions. • Systems metrics: traditional
runtime, process RAM. • Empirical convergence: We period-
ically evaluate the quality of Turbo’s histogram by running
a validation workload sampled from the same query pool.
We measure the accuracy of the histogram as the fraction of
queries that are answered with error ≥ 𝛼/2 by the histogram.
We define empirical convergence as the number of histogram
updates necessary to reach 90% validation accuracy.
Default parameters. Unless stated otherwise, we use the fol-
lowing parameter values: privacy (𝜖𝐺 = 10, 𝛿𝐺 = 0); accuracy
(𝛼 = 0.05, 𝛽 = 0.001); for Covid: {learning rate 𝑙𝑟 starts from
0.25 and decays to 0.025, heuristic (𝐶0 = 100, 𝑆0 = 5), exter-
nal updates 𝜏 = 0.05}; for CitiBike: {learning rate 𝑙𝑟 = 0.5,
heuristic (𝐶0 = 5, 𝑆0 = 1), external updates 𝜏 = 0.01}.

5.2 Use Case (1): Non-partitioned Database
System-wide evaluation. Question 1: In a non-partitioned
database, does Turbo significantly improve privacy budget
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Fig. 7. Non-partitioned database: (a-c) system-wide evaluation (Question 1); (d) empirical convergence for PMW-Bypass vs. PMW (Question 2). (a-c)
Turbo, instantiated with one PMW-Bypass and Exact-Cache, significantly improves budget consumption compared to both baselines. (d) Uses Covid 𝑘zipf = 1.
PMW-Bypass has similar empirical convergence to PMW, and both converge faster with much larger lr than anticipated by worst-case convergence.
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Fig. 8. Impact of parameters (Question 3). Uses Covid 𝑘zipf = 1. Being too
optimistic or pessimistic about the histogram’s state (a), or too aggressive or
timid in learning from each update (b), give poor performance.

consumption compared to vanilla PMW and a simple Exact-
Cache? Fig. 7(a)-7(c) show the cumulative privacy budget
used by three workloads as they progress to 70𝐾 queries.
Two workloads correspond to Covid, one uniform (𝑘zipf = 0)
and one skewed (𝑘zipf = 1), and one uniform workload for
CitiBike. Turbo surpasses both baselines across all three
workloads. The improvement is enormous when compared
to vanilla PMW: 15.9 − 37.4×! PMW’s convergence is rapid
but consumes lots of privacy; Turbo uses little privacy during
training and then executes queries for free. Compared to just
an Exact-Cache, the improvement is less dramatic but still
significant. The greatest improvement over Exact-Cache is
seen in the uniform Covid workload: 16.7× (Fig. 7(a)). Here,
queries are relatively unique, resulting in low hit rate for the
Exact-Cache. That hit rate is higher for the skewed workload
(Fig. 7(b)), leaving less room for improvement for Turbo:
9.7× better than Exact-Cache. For CitiBike (Fig. 7(c)), the
query pool is much smaller (< 2.5𝐾 queries), resulting in
many exact repetitions in a large workload, even if uniform.
Nevertheless, Turbo gives a 1.7× improvement over Exact-
Cache. And in this workload, Turbo outperforms PMW by
37.4× (omitted from figure for visualization reasons). Overall,
then, Turbo significantly reduces privacy budget consumption
in non-partitioned databases, achieving 1.7 − 15.9× improve-
ment over the best baseline for each workload (goal (G5)).
PMW-Bypass evaluation. Using Covid 𝑘zipf = 1, we mi-
crobenchmark PMW-Bypass to understand the behavior of
this key Turbo component. Question 2: Does PMW-Bypass

converge similarly to PMW in practice? Through theoretical
analysis, we have shown that PMW-Bypass achieves similar
worst-case convergence to PMW, albeit at slower speed (§4.3).
Fig. 7(d) compares the empirical convergence (defined in
§5.1) of PMW-Bypass vs. PMW, as a function of the learning
rate 𝑙𝑟 . We make three observations, two of which agree with
theory, and the last differs. First, the results confirm the the-
ory that (1) PMW-Bypass and PMW converge similarly, but
(2) for “good” values of 𝑙𝑟 , vanilla PMW converges slightly
faster: e.g., for 𝑙𝑟 = 0.025, PMW-Bypass converges after 1853
updates, while PMW after 944. Second, as theory suggests,
very large values of lr (e.g., 𝑙𝑟 ≥ 0.4) impede convergence
in practice. Third, although theoretically, 𝑙𝑟 = 𝛼/8 = 0.00625
is optimal for worst-case convergence, and it is commonly
hard-coded in PMW protocols [58], we find that empirically,
larger values of 𝑙𝑟 (e.g., 𝑙𝑟 = 0.05, which is 8× larger) give
much faster convergence. This is true for both PMW and
PMW-Bypass, and across all our workloads. This justifies
the need to adapt and tune mechanisms based on not only
theoretical but also empirical behavior (goal (G4)).

Question 3: How do PMW-Bypass heuristic, learning rate,
and external update parameters impact consumed budget?
We experimented with all parameters and found that the two
most impactful are (a) 𝐶0, the initial threshold for the number
of updates each bin involved in a query must have received
to use the histogram, and (b) the learning rate. Fig. 8 shows
their effects. Heuristic 𝐶0 (Fig. 8(a)): Higher 𝐶0 results in a
more pessimistic assessment of histogram readiness. If it’s
too pessimistic (𝐶0 = 1𝐾), PMW is never used, so we follow
a direct Laplace. If it’s too optimistic (𝐶0 = 1), errors occur
too often, and the histogram’s training overpays. 𝐶0 = 100 is
a good value for this workload. Learning rate lr (Fig. 8(b)):
Higher 𝑙𝑟 leads to more aggressive learning from each update.
Both too aggressive (𝑙𝑟 = 0.125) and too timid (𝑙𝑟 = 0.00625)
learning slow down convergence. Good values hover around
𝑙𝑟 = 0.025. Overall, only a few parameters affect performance,
and even for those, performance is relatively stable around
good values, making them easy to tune (goal (G7)).

Question 4: How does Turbo’s adaptive, per-bin heuristic
compare to alternatives? We experimented with three alterna-
tive ISHISTOGRAMREADY designs that forgo either (1) the
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Fig. 9. Partitioned static database:
system-wide evaluation (Question 5).
Turbo is instantiated with tree-structured
PMW-Bypass and Exact-Cache. Turbo sig-
nificantly improves budget consumption
compared to both a single Exact-Cache and
a tree-structured set of Exact-Caches.

per-bin granular thresholds, or (2) the adaptivity property, or
(3) both. We make two observations. First, the coarse-grained
heuristics consume more privacy budget than the fine-grained
heuristics, especially on more skewed workloads, such as
𝑘zipf = 1.5, which have less diversity so they tend to train
histogram bins less uniformly. For example, a coarse-grained
heuristic that uses a histogram-level count of the number
of updates, with a threshold 𝐶0 to determine when the his-
togram is ready to receive any query, consumes at best 0.7
global privacy budget on a Covid workload with 𝑘zipf = 1.5;
this is achieved when 𝐶0 is optimally configured to a value
of 2070 updates. In contrast, a fine-grained heuristic, which
uses a per-bin update count with a threshold 𝐶0 for each
bin, consumes at best 0.44 global privacy budget, achieved
when𝐶0 is set to 160 updates. Second, the adaptive heuristics
consume similar budget as the optimally-configured, non-
adaptive ones, but the former are much easier to configure, as
they offer stable performance around wide ranges of the𝐶0 pa-
rameter. For example, when 𝐶0 varies in range [20, 200], the
non-adaptive per-bin heuristic’s budget consumption varies in
range [0.44, 0.81] for the 𝑘zipf = 1.5 workload, and in range
[0.31, 0.76] for 𝑘zipf = 1 workload. In contrast, Turbo’s adap-
tive, per-bin heuristic’s budget consumption varies in much
tighter ranges under the same circumstances: [0.44, 0.52] and
[0.28, 0.48] for the 𝑘zipf = 1.5 and 𝑘zipf = 1 workload, respec-
tively. Thus, Turbo’s heuristic is the best of these options.

5.3 Use Case (2): Partitioned Static Database
System-wide evaluation. Question 5: In a partitioned static
database, does Turbo significantly improve privacy budget
consumption, compared to a single Exact-Cache and a tree-
structured set of Exact-Caches? We divide each database into
50 partitions and select a random contiguous window of 1
to 50 partitions for each query. We adjust the (𝐶0, 𝑆0) heuris-
tic parameters to (50, 1) for Covid and (1, 1) for CitiBike.
Fig. 9(a)-9(c) show the average budget consumed per parti-
tion up to 300K queries. Compared to the static case, Turbo
can now support more queries under 𝜖𝐺 = 10 thanks to par-
allel composition: each query only consumes privacy from
the accessed partitions. Turbo further divides privacy budget
consumption by 1.9 − 4.7× compared to the best-performing
baseline for each workload, demonstrating its effectiveness
as a caching strategy for the static partitioned use case.

Tree structure evaluation. Question 6: When does the tree
structure for histograms outperform a flat structure that main-
tains one histogram per partition? We vary the average size
of the windows requested by queries from 1 to 50 partitions
based on a Gaussian distribution with std-dev 5. We find the
tree structure for histograms is beneficial when queries tend
to request more partitions (25 partitions or more). Because
the tree structure maintains more histograms than the flat
structure, it fragments the query workload more, resulting
in fewer histogram updates per histogram and more use of
direct-Laplace. The tree’s advantage in combining fewer re-
sults makes up for this privacy overhead caused by histogram
maintenance when queries tend to request larger windows of
partitions, while the linear structure is more justified when
queries tend to request smaller windows of partitions.

5.4 Use Case (3): Partitioned Streaming Database
System-wide evaluation. Question 7: In streaming databases
partitioned by time, does Turbo significantly improve privacy
budget consumption compared to baselines? Does warm-start
help? Fig. 10(a)-10(c) show Turbo’s budget consumption
compared to the baselines. The experiments simulate a stream-
ing database, where partitions arrive over time and queries
request the latest 𝑃 partitions, with 𝑃 chosen uniformly at ran-
dom between 1 and the number of available partitions. Turbo
outperforms both baselines significantly for all workloads,
particularly when warm-start is enabled. Without warm-start,
Turbo improves performance by 1.5 − 3.5× at the end of the
workload. With warm-start, Turbo gives 1.9 − 5.4× improve-
ment over the best baseline for each workload, showing its
effectiveness for the streaming use case. When there is a large
variety of unique queries the tree-structured Exact-Cache has
a significantly better hit-rate than the Exact-Cache baseline
and performs better (Fig. 10(a)). In Fig. 10(b) and 10(c) the
query pool is considerably smaller. Both baselines have a
good enough hit-rate while the tree-structured Exact-Cache
needs to consume more privacy budget to compensate for
the aggregation error which makes it perform worse. This
concludes our evaluation across use cases (goal (G6)).

5.5 Runtime and Memory Evaluation
Question 8: What are Turbo’s runtime and memory bottle-

necks? We evaluate Turbo’s runtime and memory consump-
tion to identify areas of improvement. Fig. 10(d) shows the
average runtime of Turbo’s main execution paths in a non-
partitioned database. The Exact-Cache hit path is the cheapest
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Fig. 10. (a-c) Partitioned streaming database: system-wide consumed budget (Question 7); (d) PMW-Bypass runtime in non-partitioned setting
(Question 8). (a-c) Turbo is instantiated with tree-structured PMW-Bypass and Exact-Cache, with and without warm-start. (d) Uses Covid 𝑘zipf = 1 and one
Exact-Cache and PMW-Bypass. Shows execution runtime for different execution paths. Most expensive is when the SV test fails.

and the other paths are more expensive. Histogram operations
are the bottlenecks in CitiBike due to the larger domain size
(𝑁 ), while query execution in TimescaleDB is the bottleneck
in Covid due to the larger database size (𝑛). The 𝑅1 path is
similar across the two datasets because their distinct bottle-
necks compensate. Failing the SV check (output path 𝑅2) is
the costliest path for both datasets due to the extra opera-
tions needed to update the heuristic’s per-bin thresholds. We
also conduct an experiment in the partitioned streaming case
and find the same bottlenecks: TimescaleDB for Covid, his-
togram operations for CitiBike. Finally, we report Turbo’s
memory consumption in the streaming case with 50 partitions:
5.21MB for Covid and 1.43GB for CitiBike. For context, the
raw datasets occupy on disk 600MB and 795MB, respectively.
Thus, Turbo’s memory overhead is significant and it is caused
by the PMWs. The next section discusses this limitation and
proposes potential directions to address it.

6 Discussion
We discuss several of Turbo’s strengths and weaknesses.

Turbo provides benefits when queries overlap in the data
they access, i.e., new queries access histogram bins that have
been accessed by past queries. The functions computed atop
these bins can differ among queries (e.g., the new query can
compute an average while all the past ones computed count
fractions). If there is no data overlap in the queries, then Turbo
does not give any benefit and comes with memory/compu-
tational costs. This is typical for caching systems: they only
help if the workload has some level of locality.

A key strength in Turbo is its support for dynamic work-
loads, both new queries and new data arriving in the system.
First, Turbo adapts seamlessly to changing queries. In the
worst case, the new queries will access completely “untrained”
regions within a histogram. Our heuristic will detect this and
trigger a new cycle of external updates. In more moderate
cases, the workload will touch a mix of “trained” and “un-
trained” regions. This will yield a mix of hits and misses in the
heuristic, and Turbo will use just the right amount of privacy
budget to adapt to these slower workload changes. Second,
thanks to histogram warm-start, Turbo adapts to new data par-
titions arriving into the system with minimal privacy budget
consumption: as new partitions arrive, their histograms are
initialized from past ones and then fine-tuned for the new data

by a few external updates. This way, the new histograms will
quickly start serving query answers for free, conserving pri-
vacy budget. Still, there is a limitation: while we support new
data arriving in the system, we do not support updates on past
data; such updates would result in our heuristics predicting
less accurately when the histogram can answer a query, and
thus in more expensive SV failures.

By far, Turbo’s biggest limitation is the memory consumed
to maintain the PMW histograms. Each histogram is a Redi-
sAI vector whose size grows with data domain size 𝑁 , i.e., ex-
ponentially in data domain dimension 𝑑 (𝑁 and 𝑑 are defined
in Section 4.1). With 𝑇 partitions and 𝑘 queries, Turbo main-
tains a binary tree of such histograms, which means it stores
≈ 2𝑇𝑁 scalar values. By comparison, the Tree Exact-Cache
baseline stores at most log(𝑇 )𝑘 scalar values, a much lower
memory consumption. This impacts not only the scale of the
datasets that can be handled with Turbo, but also the runtime
performance of Turbo-mediated queries. Indeed, as shown
in the preceding section, histogram operations for CitiBike
are the bottleneck in runtime due to the relatively high do-
main size. Some techniques have previously been proposed
to address this rather fundamental challenge for PMW [30].
However, for even larger-scale deployments, we believe that it
will be worth considering PMW alternatives that may not of-
fer as compelling convergence guarantees as PMW but which
are much more lightweight. One example may be the relaxed
adaptive projection (RAP) [9], which builds a lightweight rep-
resentation of the dataset by learning a small subset of repre-
sentative data points using gradient-descent. One would have
to be willing to forfeit the theoretical convergence guarantees
to use this mechanism, and to develop an adaptive version of
RAP to support realistic systems settings involving dynamic
workloads and data. Even so, some of the core concepts we
have proposed in this paper may transfer to this new design,
including passing RAP-based estimations through an SV to
ensure result accuracy while incorporating a heuristic-based
bypass to avoid expensive failures in the SV.

Finally, we touch on several potential vulnerabilities. First,
an adversary may craft queries that consume budget by gener-
ating cache misses. The convergence proofs in §A.5 provide a
bound on how much such queries can affect budget consump-
tion when a straightforward cutoff parameter is configured
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upfront. Second, response time can be a side-channel, which
we leave out of scope but should be addressed in the future.
Third, 𝑛, the number of elements in the database (or in each
partition), is considered public knowledge. This can leak in-
formation and should be addressed by consuming some of
the budget to compute 𝑛 privately, as done in [40].

7 Related Work
This paper presents the first design, implementation, and

evaluation for a general, effective, and accurate DP-caching
system for interactive DP-SQL systems. In computer systems,
caching is a heavily-explored topic, with numerous algorithms
and implementations [11, 16, 64], some pervasively used in
processors, operating systems, databases, and more. How-
ever, traditional forms of caching differ significantly from
DP caching, justifying the need for a specialized approach
for DP. The primary purposes of traditional caching are to
conserve CPU and to improve throughput and latency; for
these purposes, existing caches can be readily reused in DP
systems. However, DP caching aims to conserve privacy bud-
get, which requires a new design to be truly effective. For
example, layering Redis on a DP database to cache query re-
sults would save CPU, but for privacy it would be equivalent
to the “Exact-Cache” baseline that our evaluation shows is
less effective than Turbo. This paper thus builds upon general
traditional caching concepts – such as the two-layer design,
the principle of generality in supporting multiple workloads –
but develops a cache specialized in conserving DP budget.

To our knowledge, no existing DP system incorporates such
a specialized caching system. Most DP systems do not incor-
porate caching capabilities at all [7, 12, 37, 50, 53, 55]; [62]
explicitly leaves the design of an effective DP cache for fu-
ture work. Some DP systems incorporate what amounts to
an Exact-Cache by deterministically generating the same
noise upon the arrival of the same query. Three systems con-
sider more sophisticated mechanisms for DP result reuse:
PrivateSQL [38], Chorus [36], and CacheDP [48]. But the
result reuse components in these systems suffer from such
significant limitations that they cannot be considered gen-
eral and effective caching designs. PrivateSQL [38] takes a
batch of “representative” offline queries and precomputes a
private synopsis that answers them all. If new queries arrive
(online), PrivateSQL uses the synopsis to answer them in a
best-effort way, without accuracy guarantees. It does not learn
on-the-fly from them, so it is unsuited for online workloads
and does not support data streams. Chorus [36] provides a
trivialized implementation of MWEM, a variant of PMW,
however the implementation only works for databases with
a single attribute. The paper does not evaluate the MWEM-
based implementation, nor integrates it as a caching layer.
CacheDP [48] is an interactive DP query engine and has
a built-in DP cache that answers queries using the Matrix
Mechanism [43]. Our experience with the CacheDP code sug-
gests that it is not a general, effective, or accurate caching

layer for DP databases. First, CacheDP’s implementation only
scales to a few attributes and does not support parallel com-
position on data partitions; this suggests that it is not general
enough to support a variety of workloads. Second, the “Tree
Exact-Cache” baseline with which we compare in evaluation
matches, to our understanding, the CacheDP design while
scaling to the higher-dimension datasets and streaming work-
loads we evaluate against. Our evaluation shows Turbo more
effective than Tree Exact-Cache.

While DP caching are under-explored in systems, the topic
of optimizing global privacy budget for a query workload
is heavily explored in theory. Approaches include generat-
ing synthetic datasets or histograms that can answer certain
classes of queries, such as linear queries, with accuracy guar-
antees and no further privacy consumption [9, 13, 30, 31,
44, 60]; and optimizing privacy consumption over a batch of
queries by adapting the noise distribution to properties of the
queries [42, 43, 49]. Apart from PMW [31], all these meth-
ods operate in the offline setting, where queries are known
upfront. This setting is unrealistic, as discussed in §3.2.

All of the theory works cited above, including PMW, suffer
from another limitation: they operate on static datasets and do
not support new data arriving into the system. PMWG [20]
is an extension of PMW for dynamic “growing” databases,
but operates in a setting where all queries request the en-
tire database. This precludes the use of parallel composition
for queries that access less than the entire database, such as
queries over windows of time. Other algorithms focus on
continuously releasing specific statistics over a stream, such
as the streaming counter [35] that inspired our tree structure,
and extensions to top-k and histogram queries [14]. These
works do not support arbitrary linear queries, and they answer
all predefined queries at every time step while we only pay
budget for queries that are actually posed by analysts.

8 Conclusion
Turbo is a caching layer for differentially-private databases

that increases the number of linear queries that can be an-
swered accurately with a fixed privacy guarantee. It employs
a PMW, which learns a histogram representation of the dataset
from prior query results and can answer future linear queries
at no additional privacy cost once it has converged. To en-
hance the practical effectiveness of PMWs, we bypass them
during the privacy-expensive training phase and only switch
to them once they are ready. This transforms PMWs from in-
effective to very effective compared to simpler cache designs.
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