
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

RubbleDB: CPU-Efficient Replication with NVMe-oF
Haoyu Li, Sheng Jiang, and Chen Chen, Columbia University; Ashwini Raina,

Princeton University; Xingyu Zhu, Changxu Luo, and Asaf Cidon,
Columbia University

https://www.usenix.org/conference/atc23/presentation/li-haoyu

RubbleDB: CPU-Efficient Replication with NVMe-oF

Haoyu Li1, Sheng Jiang1, Chen Chen1, Ashwini Raina2, Xingyu Zhu1, Changxu Luo1, and Asaf Cidon1

1Columbia University, 2Princeton University

Abstract
Due to the need to perform expensive background compaction
operations, the CPU is often a performance bottleneck of
persistent key-value stores. In the case of replicated storage
systems, which contain multiple identical copies of the data,
we make the observation that CPU can be traded off for spare
network bandwidth. Compactions can be executed only once,
on one of the nodes, and the already-compacted data can be
shipped to the other nodes’ disks, saving them significant
CPU time. In order to further drive down total CPU consump-
tion, the file replication protocol can leverage NVMe-oF, a
networked storage protocol that can offload the network and
storage datapaths entirely to the NIC, requiring zero involve-
ment from the target node’s CPU. However, since NVMe-oF
is a one-sided protocol, if used naively, it can easily cause
data corruption or data loss at the target nodes.

We design RubbleDB, the first key-value store that takes
advantage of NVMe-oF for efficient replication. RubbleDB
introduces several novel design mechanisms that address the
challenges of using NVMe-oF for replicated data, including
pre-allocation of static files, a novel file metadata mapping
mechanism, and a new method that enforces the order of
applying version edits across replicas. These ideas can be
applied to other settings beyond key-value stores, such as dis-
tributed file and backup systems. We implement RubbleDB
on top of RocksDB and show it provides consistent CPU
savings and increases throughput by up to 1.9× and reduces
tail latency by up to 93.4% for write-heavy workloads, com-
pared to replicated key-value stores, such as ZippyDB, which
conduct compactions on all replica nodes.

1 Introduction
To provide high availability, disk-based key value stores are
often replicated on multiple machines [2,21, 22, 25,35, 43]. A
standard architecture for replicating key-value stores is that
each machine runs a local key-value instance, and a replication
layer controls which replica gets shipped to each instance.

However, key-value stores spend a significant portion of
their computing resources on background compaction op-

erations, which rebalance and garbage-collect the data on
disk. For example, in the case of log-structured merge trees
(LSM trees), the standard disk-based key-value store de-
sign [2,4,8,22,41], previous work has shown that compaction
can consume up to 45% of CPU in production workloads, and
by avoiding compaction, key-value stores can increase their
throughput by up to 2× [12]. We have reproduced these ex-
periments and find that with RocksDB, compaction consumes
up to 72% of the total CPU cycles.

This leads to the simple observation that, in the case of
replicated key-value stores, where each node sees identical
commands, the compaction operations conducted on each
machine that stores the replica of the data represent redun-
dant effort. Therefore, we can design an architecture, where
a primary node conducts compaction operations locally, and
then ships the already-compacted files to the secondary nodes
that store the data copies, thereby significantly reducing their
CPU consumption.

However, such an approach has two important drawbacks.
First, it increases the amount of network traffic because not
only do the regular operations need to be replicated, but also
the compacted files. Fortunately, network traffic in modern
datacenters is often underutilized; for example, cluster traces
from Alibaba [1] and Snowflake [47] show that 50-–75% of
network capacity consistently remain idle. Therefore, reduc-
ing CPU consumption at the expense of additional network
traffic is often a desirable trade-off. Second, shipping the files
from the primary to the secondary nodes still requires some
processing from both: at the extreme, if both ends use TCP,
then shipping the files will incur the cost of processing the
TCP packets on both ends, as well as the cost of traversing
the storage stack on the secondary nodes.

To address the second problem, we turn to NVMe-oF, a
networked storage protocol that minimizes CPU costs at sec-
ondary nodes. NVMe-oF extends the NVMe protocol to al-
low one server to access a disk of a remote server directly,
with minimal involvement of the remote server’s CPU. Even
better, most commodity datacenter NICs support offloading
the entire NVMe processing at the remote server, by allow-

USENIX Association 2023 USENIX Annual Technical Conference 689

ing the remote NIC to talk directly to the NVMe storage
device. Therefore, if we use NIC-offloaded NVMe-oF, the
secondary’s host CPU will not be involved at all in processing
the incoming replicated files, thereby completely eliminating
all of its CPU costs due to compaction.

However, using NVMe-oF to replicate files across storage
nodes creates two challenges. First, since the remote node’s
local file system (e.g., ext4) is not involved in writing the files,
it is not aware of the updated file and its location, has no way
to read it, and may even accidentally overwrite it. Second, the
key-value application running on the remote node must also
be synchronized with the incoming files. Its application-level
in-memory data structures must be updated to find and read
data from new files that were updated on its local storage
device, and it must not read data from stale files that were
deleted in the compaction process.

In this work, we introduce RubbleDB, the first distributed
storage system that leverages offloaded NVMe-oF for efficient
replication. The key contributions underlying RubbleDB’s
design are mechanisms that provide both file system synchro-
nization and application synchronization at the remote node,
so it can safely and correctly read data that was written to it
via NVMe-oF.

In order to simplify file system synchronization, we make
the observation that modern SSD-based datacenter storage
systems [4, 8, 9, 16, 35] write data in large immutable (and
often fixed-sized) chunks, and do not allow in-place updates.
Therefore, RubbleDB pre-allocates all on-disk data on all
nodes as fixed-sized fixed-location files. RubbleDB maintains
a file map that stores the mappings between the file names
and the pre-allocated file locations, and indicates whether a
file contains live or stale data. When a new file is replicated,
it is sent to a pre-allocated location that does not contain a
live file. When a file is deleted in the compaction process, it is
simply marked as stale in the map, and is not actually deleted.

For application-level synchronization, RubbleDB needs to
keep the secondaries’ in-memory data structures synchro-
nized, so when they read data from disk, they read the most
up-to-date object versions. To do so, RubbleDB ensures that
changes made to the in-memory data structures in the sec-
ondary nodes will be consistent with the compactions exe-
cuted by the primary node. It also carefully synchronizes the
deletion of objects flushed from disk or memory, in order
to avoid accidentally deleting objects that were processed
out-of-order in the secondary nodes.

Our evaluation demonstrates that RubbleDB consistently
leads to significant CPU and I/O bandwidth savings com-
pared to a baseline, which represents the architecture of sys-
tems such as Meta’s ZippyDB [17, 43] or CockroachDB [42],
which run compaction on all nodes in a replication group.
These savings enable RubbleDB to consistently achieve the
same or higher throughput than the baseline across the entire
YCSB suite [20], as well as on five traces from Twitter’s key-
value cache clusters [49]. In particular, RubbleDB provides a

speedup up to 1.9× and a tail latency improvement of up to
93.4%. We also show that RubbleDB consistently provides
higher performance in different scenarios, including different
replication factors, different numbers of RocksDB instances
per physical server, and different types of storage devices.

While in this paper we focus on the particular use case of a
replicated key-value store, we believe our design ideas are ap-
plicable to other common storage applications with primary-
backup replication, such as replicated file systems [16, 26, 34,
48] and disaster recovery and backup services [38].

2 Background and Motivation
This section lays out the background and motivation for the
paper. §2.1 provides background information on the most
common data structure for disk-based key value stores, the
log structure merge tree (LSM tree), and demonstrates that
background compaction operations in LSM trees consume
significant CPU. §2.2 provides a primer on the NVMe-oF
protocol and then shows the performance benefit of using
NVMe-oF for storage replication with a microbenchmark.

2.1 The High Cost of Compactions
LSM trees. LSM trees [37] are a popular data structure
for disk-based key-value stores, which powers many modern
key-value stores, such as RocksDB [8], LevelDB [4] and
WiredTiger [9]. Since small random writes significantly hurt
SSD (and HDD) performance, the main design goal behind
LSM trees is that data written to disk is always written in
large contiguous chunks and is never updated in-place.

As a representative system for LSM trees, we provide a
primer on how RocksDB, a popular key-value store works. In
RocksDB, to avoid small random writes to disk, all incoming
data writes are batched in memory, in a data structured called
the MemTable. Each entry in the MemTable has a sequence
number that enables key versioning. MemTables can be ac-
tive, which means that they are mutable and can be updated
with new incoming updates, and immutable, which means
they are waiting to be flushed and cannot be updated further.
Eventually, the immutable MemTables get flushed to disk and
written using a format called sorted string table (SST) files,
which are composed of sorted key-value pairs. SST files are
composed of blocks, each of which can be a data block or a
metadata block. The metadata blocks include index blocks
whose entries point to the keys at the start of each data block.

SST files are organized hierarchically into levels (L0, L1,
..., LN), where the “upper levels” (e.g., L0 is “higher” than
L1 in the hierarchy) store the more recently updated versions
of each key-value pair. Data from the MemTable is flushed
into L0, which stores files with overlapping key ranges, while
the files in lower levels (L1,...,LN) have non-overlapping key
ranges.

A key feature of LSM tree-backed stores is background
compaction, which periodically scans multiple SST files from
two adjacent levels, combines them into a single file, and

690 2023 USENIX Annual Technical Conference USENIX Association

flushes the new file into the lower level. In this process,
deleted and overwritten keys are discarded, freeing up space
for new data. Compactions are necessary not only for freeing
up space on disk, but also for reducing the number of I/Os
required on average to read data from the LSM tree [37].

To reconstruct the LSM tree after a failure, RocksDB per-
sists a log containing changes to the tree, e.g., deletion or
generation of SST files. RocksDB records such changes using
version edits, where a version represents the current set of SST
files in the tree. For example, a version edit may record the
removal of stale SST files and the generation of new merged
files. Although compaction jobs run in parallel, they produce
version edits in a serializable order because RocksDB protects
the tree status with a mutex.

CPU consumption of compactions. Compactions are ex-
pensive and can affect the performance of the key-value store.
A compaction job requires reading the data of all the files
involved in the compaction (often involving tens of MB of
data or more), sorting them, and writing them back to disk.

As an example, we measure the CPU time consumed by
compactions by running a microbenchmark (described in
§5.2) on a replicated 3-node key-value store, where each
node conducts compaction locally, under a data ingestion mi-
crobenchmark (YCSB load [20]). In this workload, 72% of
CPU time was dedicated solely for compaction jobs! Due to
their high cost of compactions, there is a large body of work
on reducing their resource consumption in single-node LSM
trees [12,13,29,32,39], e.g., by delaying them, synchronizing
them with incoming requests, or optimizing the LSM tree
data structures and parameters to reduce their cost.

Saving compaction CPU and I/O bandwidth in replicated
key-value stores. Our focus is orthogonal to these single-
store optimizations: we make the observation that in settings
where the same data is replicated on a set of R key-value
stores, we do not have to run R identical compaction jobs
across all nodes, which are essentially performing the same
exact computation. Therefore, compaction can occur only
once (on the primary node), and the already-compacted SST
files can be shipped to the secondary nodes, which hold the
backup copy of the data.

Such an approach has the potential to significantly reduce
CPU consumption on the secondary nodes, since they no
longer need to issue read and write I/O and sort the compacted
data, the latter of which typically consumes the most CPU
during compaction jobs [12, 13, 29]. In addition, this would
eliminate the compaction read I/O of secondary nodes, since
they would not need to read the files that need to be merged by
the compaction job, but it would not eliminate the secondary’s
write I/O, since the new file would still have to be written
back to the disk. Finally, it would also reduce the memory
pressure on the secondary nodes due to compaction.

However, executing compactions only on primary nodes
has a price. The primary cost of this approach is increased

User-space App

VFS

Block Layer

NVMe Driver

1. Write syscall Kernel Boundary

2. Locate physical sectors

3. Schedule I/O requests

4. Build network capsules

Block Layer

NVMe Driver

NVMe
SSD

I/O Queues

Fabric

6a. Submit I/O requests

8. Write data locally

Host Target

7. Dispatch I/O requests

NIC NIC
6b. Offloaded
direct write

5. Receive packets

Figure 1: NVMe-oF overview.

network bandwidth and NIC resource consumption, since now
not only the “regular” incoming read/write requests need to be
replicated, but also the post-compaction SST files. Fortunately,
in many datacenters the network is often underutilized: for
example, in traces from Alibaba [1] and Snowflake [47], 50–
75% of the network capacity is idle. In addition, the primary
node would consume some additional CPU in shipping the
files to the secondary nodes’ disks.

Therefore, since this approach involves a trade-off primar-
ily between minimizing CPU consumption on the secondary
nodes and increasing total network bandwidth, we seek to
ship the SST files with a protocol that will minimize CPU
usage on the secondary nodes. To this end, we turn to NVMe-
oF, a state-of-the-art networked storage protocol supported
by Linux and modern NICs, which can be run without the
involvement of the secondary nodes’ CPU.

2.2 Motivation for Using NVMe-oF
NVMe-oF primer. NVMe-oF is an extension of the NVMe
protocol for networked storage. NVMe-oF allows an appli-
cation to directly access a storage device that is connected
to a remote server, using the NVMe protocol. Figure 1 de-
picts the flow of an NVMe-oF request. The host (left side of
the diagram) is the server that initiates the request, and the
target is the remote server and the SSD connected to it. The
NVMe-oF request is initiated by an application on the host,
which issues a system call, and subsequently traverses the
entire OS storage stack, treating it as a regular local NVMe
request, until it reaches the NVMe driver.

Take a write request as an example (Figure 1): the userspace
application issues a WRITE() system call on the file located
on an NVMe-oF mounted disk (step 1), then just like a normal
local I/O, it goes through the Linux Virtual File System (VFS)
to find the inode, which maps the physical sectors on the disk
and is then submitted to the block layer (step 2) where it
gets batched by the I/O scheduler, and is dispatched to the
host-side NVMe driver (step 3).

The host and target drivers maintain multiple I/O queues
for exchanging the NVMe-oF capsule, which is a data struc-
ture that contains essential information needed for an NVMe

USENIX Association 2023 USENIX Annual Technical Conference 691

gRPC + WRITE() NVMe/TCP NVMe/RDMA
Throughput 1028 MB/s 2986 MB/s 3748 MB/s
CPU 155% 135% 50%

Table 1: Comparison of throughput and CPU consumption of 1 MB
writes with different protocols. NVMe-oF (via TCP or RDMA) is
much more efficient than replicating through userspace.

communication between the host and the target. The NVMe
driver handles this request by constructing a corresponding
NVMe-oF command within a capsule, mapping data and meta-
data from the memory, and submitting it to one I/O queue.
The capsule is then forwarded to the relevant network stack
(step 4) depending on the fabric type (TCP, RDMA, etc.)
and is then forwarded to the target. For NVMe/TCP, the cap-
sule is embedded in TCP packets and contains both data and
metadata, while for NVMe/RDMA, the target and the host ex-
change the capsule using two-sided RDMA operations. With
NVMe/RDMA, the capsule records the memory address of
the data buffer in the host and the target consequently reads
that portion of memory using a one-sided RDMA read.

On the target (step 5), after the driver extracts the NVMe-oF
command and user data from the network packet, it generates
the block layer request and submits it to the block layer for
I/O scheduling (step 6a). The target’s NVMe driver, at last,
receives the I/O request from the block layer (step 7) and
writes the user’s data to the local NVMe SSD through the
PCIe bus (step 8).

In the past few years, major NIC model lines (e.g., NVIDIA
ConnectX, Broadcom Stingray, Intel IPU) have supported
completely offloading the NVMe-oF target datapath to the
NIC, and allowing the NIC to directly write the data to the
NVMe device. This offers an alternate datapath that bypasses
the target’s CPU completely (step 6b). When the NIC attached
to the target receives an NVMe capsule from the host, it
executes the NVMe request and directly writes data on the
NVMe SSD via DMA.

Potential benefit of NVMe-oF for replication. Popular
distributed storage systems (e.g., CockroachDB [42] and
Ceph [48]) often use an RPC (e.g., gRPC [3]) to send data
from the primary to the secondary node, which in turn is
written locally to the SSD (e.g., with a WRITE() system call).

We compare the throughput and CPU usage of this
userspace-based baseline with two NVMe-oF protocols
(NVMe/RDMA, which stands for NVMe-oF over RDMA
and NVMe/TCP, which stands for NVMe-oF over TCP), in
a microbenchmark that writes 1 MB data chunks over the
network in a closed loop, with two servers using the same
experimental setup on CloudLab [40] described in §5.1. In
the experiment, each server contains one primary node that is
writing to a secondary node on the second server, with a total
of 256 available cores. The aggregate results are shown in
Table 1. The result shows that the throughput of gRPC with
WRITE() is only 34% of the throughput NVMe/TCP while the
CPU usage is 20% higher. In addition to the more complex
logic in the RPC framework, the userspace stack requires ex-

tra user-kernel boundary crossings and context switches when
the data buffer is delivered to the userspace application from
the TCP/IP stack in the kernel and then written to the local
file which incurs a kernel trap. NVMe/TCP, on the other hand,
processes the data write completely in the NVMe driver in the
kernel, therefore saving a substantial amount of CPU cycles
in each write request, thereby increasing the throughput. In
addition, NVMe/RDMA outperforms NVMe/TCP due to the
elimination of unnecessary copying and CPU bypassing.

3 Challenges
Substituting a userspace replication protocol with NVMe-oF
introduces challenges at two different layers: at the file system
level and the application level.

File system inconsistency. NVMe-oF introduces inconsis-
tency at the file system level. A naive way to ship files through
NVMeoF is to simply allocate a new file on the remote disk
and write to it. However, in such a scheme, the secondary node
will not even see the new SST files in its file system. This is
because the SST files are created in the primary’s file system,
and NVMe-oF only forwards NVMe commands, which get
executed below the file system layer in the secondary node’s
storage stack (see Figure 1). So, the primary and secondary
nodes may see different files systems on the same NVMe
disk. Even worse, the data sent by the host could accidentally
overwrite data in physical blocks at the secondary that it is
not supposed to access, since the local file system of the target
may have changed its file-to-block mapping.

Application inconsistency. Even if the target’s file system
is synchronized with the host’s view, NVMe-oF introduces
inconsistency at the application level. Since the persistent
key-value store maintains in-memory data structures (e.g., to
buffer writes), these data structures may not be synchronized
between the primary and the secondary, leading to data loss. In
particular, in RocksDB, there will be discrepancies between
the primary and secondary node within their MemTables,
which store the values of recently-written data in memory.

Figure 2 shows an example where discrepancies in the pri-
mary and secondary’s MemTables cause data loss in the sec-
ondary. Consider the case where there is one active MemTable
(MemTable 1), which is nearly full and only has capacity for
one more object (Figure 2a). Now consider that two objects
(A and B) arrive concurrently. Both primary and secondary
use two threads to process incoming requests, and in this case
RocksDB does not provide any guarantee on the order that the
writes will be processed. In the primary, object A is written
before B, and is therefore written to MemTable 1, which is
sealed and marked inactive, while object B is written to the
newly active MemTable 2. Next, the primary forwards objects
A and B to the secondary, but the secondary applies them in
the opposite order due to non-deterministic thread scheduling:
B is written to MemTable 1, and A is written to MemTable 2.
Consequently, the secondary’s MemTable 1 stores different

692 2023 USENIX Annual Technical Conference USENIX Association

Thread 1
A

MemTable 1
(active)

Thread 2
B

Thread 1 Thread 2

Primary Secondary

MemTable 1
(active)

(a) Initial state, single active MemTable.

Thread 1
A

MemTable 1
(immutable)

A

Thread 2
B

Thread 1

B

Thread 2

MemTable 2
(active)

B

MemTable 1
(immutable)

Write A B

MemTable 2
(active)

A

Write

(b) The secondary executes concurrent requests at a different order.

Thread 1
A

A

Thread 2
B

B

Thread 1
A

B

Thread 2
B

A

SST 1 SST 1

Write Write

1. Flush

3. Send a version edit:
“add SST 1, del memtable 1”

4. Apply the version edit:
“add SST 1, del memtable 1”

MemTable 1
(immutable)

MemTable 2
(active)

MemTable 1
(immutable)

MemTable 2
(active)

2. Ship SST
B is lost!

(c) The secondary removes MemTable 1, losing object B.

Figure 2: An example of inconsistency across node MemTables.

data than the primary’s MemTable 1 (Figure 2b).
Now, the primary flushes MemTable 1 to disk, causing it

to delete the objects stored in MemTable 1 from memory. If
it then ships the new SST file to the secondary, and instructs
it to also delete it to delete MemTable 1 as well, this will
result in the loss of B at the secondary, because B will not be
stored neither in its MemTables, nor on its disk (Figure 2c).
In this case, the reason for the data loss is due to the fact
that thread scheduling across the nodes in a non-deterministic
fashion, so operations are applied in a different order, causing
discrepancies.

Making matters worse, even if we had a way to force sec-
ondary nodes to process requests in the same order as the
primary, the content of the MemTables would still diverge.
This is because RocksDB’s MemTables store their data using
randomized skip lists, which will cause MemTables in differ-
ent nodes to contain a different number of entries and become
full at different times.

4 Design and Implementation
We present the design and implementation of RubbleDB, and
explain the key mechanisms that allow RubbleDB to address
the inconsistencies introduced by replication via NVMe-oF.

RubbleDB is a replicated key-value store, composed of
a set of RocksDB instances, with a replication layer on top.
RubbleDB uses chain replication [45] to provide strong con-
sistency and fast recovery. The client only communicates with
the replicator layer, which is in charge of dispatching requests
to the proper primary node (in case of write) or tail node (in
case of a read) and of handling failure recovery. Figure 3

Replicator

Group 1 (P)

Group 2 (S)

Group K (S)

…

Server 1

Group 1 (S)

Group 4 (P)

Group 6 (S)

…

Server 2

Group 1 (S)

Group 3 (S)

Group 9 (P)

…

Server M

…

…

Client 1 Client 1 Client N

1. Send requests

2.a Dispatch write requests 2.b Dispatch read requests

3. Replicate
requests

4. Replicate
requests

5. Return results

6. Return results

Ship SSTs and
version edits

Metadata TableReplication Protocol

Figure 3: RubbleDB overview.

depicts the overall architecture of RubbleDB. There are N
clients and K replication groups, and in between sits the repli-
cator layer. Replication groups contain R RocksDB instances
or nodes, one of which is the primary, and the others are sec-
ondaries. Only the primary performs flush or compaction jobs.
Therefore, in addition to replicating client write requests, the
primary node also ships compacted SST files via NVMe-oF,
assuming sufficient network bandwidth is available. If the
network becomes congested, RubbleDB can fall back to local
compaction on all replicas. Specifically, RubbleDB compares
the latencies of shipping SST files and local compaction. If the
former is consistently greater over a time period, RubbleDB
falls back to regular compaction. Different replication groups
store disjoint key spaces. By default, the R replicas are stored
on R different random servers. In the future, we plan to sup-
port other more sophisticated data placement policies [18,19].
We intentionally keep each replication group small (by default
10 GB), so the recovery load can be spread across multiple
nodes in the cluster when a server or disk fails. It is worth
noting that we assume no dishonest or malicious node (e.g.,
we assume all nodes operate under a single organization in a
single data center). Next, we discuss the design details of the
two main key components of RubbleDB: the replicator layer
and replication groups.

4.1 Replicator Layer
To provide a clean key-value interface from users and hide
the complexity of dealing with the replication protocol, Rub-
bleDB uses a replicator layer as a proxy layer between users
and replication groups. Users simply send regular RocksDB
requests to and receive results from the replicator layer, which
transparently handles the replication protocol. The replicator
thus has two roles: 1) routing requests to a replica of the group
that contains the requested key-value pairs and 2) detecting
and recovering from any failed replicas.

Different replication groups contain separate key spaces. To
route requests, the replicator maintains a metadata table that
records the key space and network addresses for each replica
group. Once it receives a request, the replicator first looks up
the group number in the metadata table. Next, according to
the replication protocol, it forwards the request to a specific

USENIX Association 2023 USENIX Annual Technical Conference 693

mem imm

SST

SST SST

SST SST

L0

L1

LN

…

SST
I. Flush

I. Compaction

kv kv …

mem imm

SST

SST SST

SST SST

SST

kv kv …

2. Replicate requests

Primary Secondary

II. Ship SSTs and
version edits

1. Write MemTable 3. Write MemTable

III. Apply
version edits

Figure 4: Replication process.

replica within that group. The replicator also sends heart
beat messages to every replica periodically to confirm its
health. If it does not receive any replies from a replica after a
time threshold, the replica is assumed to have failed, and the
replicator starts the recovery process.

In Figure 3 foreground data flows are represented by a solid
arrow, while background flows are dashed. The figure only
shows the background requests belonging to replication group
1, which is replicated across servers 1, 2 and M. Clients first
send requests to the replicator (step 1), who after consulting
the metadata table forwards the requests to replication group
1 (step 2). Following the chain replication protocol [45], write
requests (e.g., put and update) go to the head (step 2.a), while
reads (e.g., get and scan) go to the tail (step 2.b). In the case
of writes, the primary (head) replicates the write request to
the next secondary in the chain (step 3), which applies the
write and then replicates it to the next node in the chain (step
4). When the tail node completes a request (read or write), it
will reply to the replicator (step 5), which finally returns the
results to the client (step 6).

It is important to note that the replicator is only a logically
centralized component that orchestrates traffic and recovery.
To prevent the replicator from being a performance bottleneck
or a single point of failure, it can be implemented as a dis-
tributed fault-tolerant cluster [17, 42]. We leave this direction,
as well as other aspects of the replicator’s design, such as
dynamic load balancing and dynamic key-space partitioning,
for future work.

4.2 Replication Groups
Each node within a replication group is a small RocksDB
instance, composed of a primary node (head of the chain) and
a chain of secondary nodes, which store the backup copies
of the data. Figure 4 presents how a primary interacts with
one of its secondary nodes. Solid and dashed arrows represent
foreground and background operations, respectively. Write
requests are executed from the head replica (the primary) to
the tail (steps 1-3). Read requests are omitted in Figure 4
because they are only sent to the tail secondary node.

Steps I-III show how RubbleDB avoids background com-
paction jobs in secondaries. In step I, flush and compaction
jobs happen normally in the primary (triggered by filled

Slot 1 Slot j Slot N… …

File i

1. R/O FS

Slot 1 Slot j Slot N… …

File i

Primary

Secondary

SSD

2. R/W FS

3. Get an empty Slot j

4. Copy File i to Slot j

5. Send the mapping
from File i to Slot j

6. Link File i to Slot j

7. Update mapFile Map

File Map

Figure 5: Primary ships SST files to pre-allocated slots.

MemTables or upper-layer SST files). These jobs change the
primary’s LSM tree in three ways: 1) deletion of the data be-
ing compacted (both in-memory immutable MemTables and
on-disk SSTs, depicted with dashed rectangles in Figure 4),
2) creation of compacted SSTs (dashed rounded rectangles),
and 3) modification of the LSM tree version (information
recording current SST files in the tree). RubbleDB ensures
that the same changes also occur in the secondaries by ship-
ping both compacted SSTs and version edits over the network
(step II). Shipping the compacted SST file addresses 2), so
the secondary only needs to delete the original obsolete SST
files according to the version edits and update its own LSM
tree version (step III).

However, it is not trivial to guarantee the correctness of
steps II and III due to the challenges described in §3. In §4.2.1
we discuss how RubbleDB solves the challenge of file system
inconsistency, while in §4.2.2 we describe how RubbleDB
addresses application inconsistency.

4.2.1 File Pre-allocation

As the primary and secondary nodes mount their own local
file systems (e.g., ext4) on top of the same storage device,
each local file system will not be aware of changes made by
the other file system, e.g., file creation. To ensure that shipped
SST files are visible to secondary nodes, RubbleDB uses
file pre-allocation. Before running, secondary nodes allocate
many pre-allocated file slots, which we call a file pool on their
local storage devices, after which, the primary mounts these
devices. So both sides will be aware of the file pool in their
local file systems. During runtime, the primary ships an SST
file to a secondary by writing the content to a fixed-sized slot
in the pool with direct I/O (to make sure the file gets written
to disk and bypasses the primary’s local buffer cache). Thus,
only the data blocks of the slot file are updated and the inode
remains unchanged. The secondary can also read the content
with direct I/O after the file is written.

Note that this means that secondary and primary nodes
cannot rely on the buffer cache to cache hot data blocks from
disk. Fortunately, RocksDB (and most other key-value stores)
implements its own userspace-based cache, the block cache,
which can replace the operating system’s buffer cache.

There are four practical issues with this pre-allocation

694 2023 USENIX Annual Technical Conference USENIX Association

scheme: 1) determiming the size of slot files, 2) managing
slot files in the pool, 3) avoiding dynamic file remapping by
the local file systems, and 4) ensuring that RocksDB will cor-
rectly point to the pre-allocated files even when it changes
file names. We discuss each issue below.

File size. To guarantee that the primary can find a slot to
ship SST, secondaries need to allocate a sufficient number of
file slots for every possible file size. Fortunately, key-value
stores like RocksDB typically store data in more or less fixed-
sized (or size-capped) files. Moreover, the number of SST files
in each layer of an LSM tree is also limited by compaction.
For example, by default in RocksDB, the size of an SST file
is 64 MB and the maximum number of SST files is 4448. In
this case, a secondary would need to create 4448 64 MB file
slots. In our implementation we use a fixed-size file that is
slightly larger (17 MB) than the target file size of RubbleDB’s
RocksDB instances (16 MB), since files may occasionally
exceed the target size. When files are smaller than the fixed
size of the slot, the remainder of the slot is zero-padded.

Slot management. The primary acquires slots in the pool
before shipping SST files to secondaries. Similarly, when
deleting an SST file post compaction, the corresponding slot
is released. We design a file map to track the mapping between
slots and SST files and to indicate whether a slot contains a
live SST file. Both the primary and secondary nodes have
a copy of the map. It is necessary for secondaries to own a
map copy because once the primary fails, one of them will be
chosen as the new primary.

In a flush or compaction job, the primary first acquires
empty slots in its file map and then executes the compaction.
After shipping the compacted files to the secondary nodes, it
sends the map updates to all secondaries with the version edits,
so the same updates are applied in all the secondary nodes.
After receiving the updates, the secondary marks the slots
of the old files, whose space can be overwritten, as released,
and it updates the primary’s file map to notify it about the
slot release. The reason slots are released by secondary nodes
is to avoid the case where the primary node releases a slot,
and then acquires it again before the secondary node was
notified of the slot release, which would be viewed by the
secondary as an illegal operation, where a new file overwrites
an already-acquired slot.

File remapping. The pre-allocated file slots’ mappings
from file offset to physical block address may change over
time. Various reasons can cause remapping, including dy-
namic volume management, file system extent adjustment,
etc.. To minimize interference from the file system and vol-
ume management, RubbleDB uses a dedicated and static disk
partition for the file pool in each secondary node. The par-
tition is mounted as read-only in the secondary, since the
secondary never writes to its SSD drive, and read-write in the
primary node. In case of a crash, where a secondary needs to
become a primary, it remounts with read-write mode.

Thread 1
A

A

Thread 2
B

B

Thread 1
A1

A

Thread 2
B2

SST 1

Primary Secondary

SST 1

1. Write 3. Write
2. Send tagged

requests A1 and B2

B2

Request Buffer

4. Buffer out-of-
order requests

5. Regularly check
the bufferFlush

Ship SST

MemTable 1
(immutable)

MemTable 2
(active)

Apply the version edit:
“add SST 1, del memtable 1”

B

MemTable 1
(immutable)

MemTable 2
(active)

Figure 6: Partially-ordered writes using MemTable ID.

Renaming RocksDB names each SST file with a unique
integer, e.g., 002023.sst. This leads to another issue of pre-
allocating slot files: their fixed file names. Because the sec-
ondary mounts the partition as read-only, it cannot rename the
slot files to the RocksDB format. To address this issue, Rub-
bleDB creates a symbolic link from a file with the RocksDB-
defined name to the slot file, so the RocksDB instance on
secondary can correctly access its read-only file pool.

Multiple groups. If there are multiple replication groups,
primary nodes from different groups will acquire slots con-
currently. To avoid contention, RubbleDB creates a dedicated
SST pool (and map) for each group. Recall that since each
pool sits on a different disk partition, there are no concurrent
writers to a file in RubbleDB.

Figure 5 summarizes the file replication workflow. Before
the replication group is formed, a disk partition is created for
the file pool on each secondary. The primary and secondary
mount the partition as read-only (step 1) and read-write (step
2), respectively. Suppose that the primary node generates SST
file i in a flush job, it first queries the file map for an empty
slot j to ship the SST file (step 3). Next, the content of SST
file i is written in slot j with direct I/O (Step 4). The data
of slot j will be transferred to the secondary node’s SSD via
NVMe-oF. At the end of the flush job, the primary sends the
mapping between file i and slot j to the secondary (step 5),
so the secondary knows how to create the correct symbolic
link (step 6) and update its file map copy (step 7).

4.2.2 LSM Tree Synchronization

Flush and compaction jobs are essentially performing merge
sort and do not change the actual state of RocksDB from
the client’s perspective1. These merge sorts contain inputs:
MemTables and SST files to be merged in the case of flush
and compaction, respectively, while the output is always SST
files that will be written to disk. This property implies that the
inputs and output of a flush or compaction job must contain
the same set of live key-value pairs. Primary nodes naturally
satisfy this requirement since they execute compaction lo-
cally. However, secondary nodes sometimes have mismatched
sets of inputs and output live key-value pairs when applying
version edits. Recall from the example in Figure 2, in the
secondary node, the input to the flush job (MemTable 1) has

1Although stale data will be discarded during compaction jobs, it is al-
ready ignored by RocksDB since read requests fetch the most recent data.

USENIX Association 2023 USENIX Annual Technical Conference 695

different live objects from the output (SST 1). Consequently,
the secondary node loses B while redundantly storing two
copies of A.

To guarantee the data consistency of secondary nodes, they
need to ensure that the inputs and outputs of every version
edit contain the same set of live objects before applying it.
However, comparing all objects across multiple MemTables
or SST files is very costly. Instead, RubbleDB forces a partial
order of requests and total order of version edits. These two
ordering techniques synchronize the secondary nodes’ LSM
trees with the primary’s. We describe them below.

Partially-ordered writes. Figure 6 describes how Rub-
bleDB addresses the MemTable discrepancy issue discussed
in the example in Figure 2 by ordering write requests with
MemTable ID. In the primary, after an object is inserted to
the active MemTable, each write request is returned with the
ID of that MemTable (step 1). The primary tags each write
request with this MemTable ID and forwards it to the sec-
ondary (step 2, the subscripts are the IDs). With the IDs, the
secondary now knows to which MemTable the primary wrote
each request. The secondary follows the same order as the
primary, by maintaining a request buffer to cache out-of-order
requests. For example, even if the secondary scheduled thread
2 before thread 1, it will fail to write B2 to MemTable 1 as its
tag (2) does not match with the MemTable ID (1) (step 3). So,
thread 2 will store the request B2 in the request buffer (step 4).
When thread 1 executes, A1 it will be written to MemTable 1.
Therefore, MemTables 1 on both the primary and secondary
nodes will have the same set of objects, which will not cause
data loss like in Figure 2c. Last, every time RocksDB switches
to a new MemTable, each thread in a secondary checks the
buffer to execute any request that can be applied correctly to
the MemTables, i.e. its tag is equal to the ID of the active
MemTable (step 5).

This scheme represents a partial order because secondary
nodes only sort write requests belonging to different MemTa-
bles. Write requests that have the same MemTable ID as the
primary’s MemTable have identical tags and can execute in
any order. This does not affect the correctness when all up-
dates in a MemTable have unique keys because MemTables
(skip lists in RocksDB by default) and flush or compaction
jobs (merge sorts) will sort them anyway. However, in the case
where there are updates for the same key, as both MemTables
and flush or compaction only select the most recent update,
the secondary has to maintain the same order among those
different updates. RubbleDB achieves such an order by fur-
ther splitting the key space among threads. For example, all
updates of key A will be handled by primary’s thread 1 in
Figure 6. Then, RubbleDB relies on in-order request delivery
(e.g., streaming RPC) to ensure those updates arrives at a
single thread of the secondary in the same order.

Totally-ordered version edits. Partially ordering writes
only guarantees that the secondary nodes eventually have the

same live objects in their MemTables as the primary node.
However, due to request buffering, updates applied on the
secondary nodes may lag the primary, so the same MemTable
ID in a secondary node may have fewer entries than the one
in the primary. Such lag introduces challenges when apply-
ing version edits in secondaries. Back to Figure 6, suppose
that at time t, the version edit (add SST 1, del MemTable

1) arrives at the secondary but the request A1 has not been
executed. Applying the version edit at time t may allow the
client to read A1, even if it has not been written. This breaks
the consistency guarantee of chain replication, which requires
that a client can only read a value after it has received an
acknowledgment that the value has been written successfully.

To avoid the scenario above, we have to ensure that the
sets of live objects in the inputs and outputs of each version
edit in the secondary are the same. We exploit the fact that
in RocksDB flush or compaction jobs generate version edits
in a serializable order (the current version is protected by
a mutex) even though they run in parallel. So, the primary
node tags version edits with sequence numbers to indicate
their order, and the secondary nodes maintain a counter and
a buffer for version edits. The counter is incremented every
time the secondary applies a version edit. The secondary
checks two conditions before applying an edit: 1) whether
the sequence number is equal to the counter and 2) whether
its inputs are ready. The latter is checked for flush jobs only,
since the inputs of a compaction are always ready if it passes
step 1) (i.e. the previous flush or compaction job has finished).
A MemTable is ready only when it becomes immutable (full).
If either of the two conditions fails, the version edit is cached
in the buffer, which is regularly checked by all threads.

With these two ordering techniques, RubbleDB synchro-
nizes the LSM tree state in a replication group and addresses
the challenge of application inconsistency.

4.3 Implementation Details
We implement RubbleDB using RocksDB 6.14.0 and gRPC
1.34.0, comprising a total of about 900 and 4000 lines of Java
and C++ code, respectively. Each replica in RubbleDB is a
RocksDB instance, and different parts of the system communi-
cate with each other using streaming gRPC calls. To simulate
concurrent clients, we modify YCSB to issue requests as
batches to our replicator in an open loop. We open-source all
the code on GitHub2.

5 Evaluation
We seek to answer four evaluation questions:

Q1: How does RubbleDB’s SST file replication affect the CPU,
network, and disk I/O usage of RubbleDB? (§5.2)

Q2: How does the replication mechanism of RubbleDB affect
its performance under different workloads? (§5.3)

2https://github.com/lei-houjyu/RubbleDB

696 2023 USENIX Annual Technical Conference USENIX Association

Workload Composition
YCSB Load 100% inserts
YCSB A 50% Read, 50% Update
YCSB B 95% Read, 5% Update
YCSB C 100% Read
YCSB D 95% Read, 5% Insert
YCSB E 95% Scan, 5% Update
YCSB F 50% Scan, 50% Read Modify Write
YCSB G 100% Update
Twitter Cluster 2 100% Get
Twitter Cluster 15 100% Set
Twitter Cluster 19 75% Get, 25% Set
Twitter Cluster 27 85% Get, 15% Set
Twitter Cluster 31 6% Get, 94% Set

Table 2: Workload Characteristics

Baseline RubbleDB
Time spent Primary Secondary Primary Secondary
Compaction 979 976 987 0

Requests 376 390 397 401
Total 2723 1786

(a) Replication factor = 2

Baseline RubbleDB
Time spent Primary Secondary Primary Secondary
Compaction 1319 2759 1375 0

Requests 535 990 570 1176
Total 5603 3121

(b) Replication factor = 3

Baseline RubbleDB
Time spent Primary Secondary Primary Secondary
Compaction 1713 5455 1846 0

Requests 692 1930 745 2254
Total 9790 4845

(c) Replication factor = 4

Table 3: CPU time (s) breakdown under YCSB load, with a co-
location factor of 1 and different replication factors.

Q3: Does the utility of NVMe-oF change as a function of the
available storage resources? (§5.3)

Q4: How fast can RubbleDB recover from failures? (§5.4)

5.1 Experimental Setup
Setup. We conduct all experiments on CloudLab [24, 40].
Unless otherwise specified, replication groups run on mul-
tiple r6525 servers and clients run on one c6420 machine
with the replicator. Each r6525 server has two 32-core AMD
7543 CPUs at 2.8 GHz, 256 GB DDR4 memory, a 1.6 TB
Dell Enterprise SSD, and a dual-port Mellanox ConnectX-6
100 Gb NIC. By default, RubbleDB uses the Mellanox NIC’s
NVMe-oF offload feature. A c6420 server has two 16-core
Intel Xeon Gold 6142 CPUs at 2.6 GHz and 384 GB DDR4
Memory. The OS is Ubuntu 20.04 LTS with a Linux version
of 5.4.0. We configure NVMe-oF target offloading following
NVIDIA’s official guide [7].

RocksDB configuration. We intentionally keep each key-
value instance small, so that if an instance fails there will be a
relatively small amount of data to re-replicate. Therefore, we
use 16 MB SST files and MemTables and an L0 of size 64 MB,
so the LSM tree will contain 64 GB data at most. Direct I/O
is enabled with a 2 GB block cache. We run DB instances

Baseline RubbleDB
Read Write Read Write

R = 2 163.7 185.6 94.6 206.6
R = 3 241.4 274.4 97.8 309.9
R = 4 343.3 387.5 101.7 410.7

Table 4: The read and write I/O (GB) on one node, with co-location
factor of 1 and different replication factors.

Baseline RubbleDB
gRPC NVMe-oF gRPC NVMe-oF

R = 2 34.5 0 34.5 105.7
R = 3 57.2 0 57.3 211.1
R = 4 80.0 0 80.1 314.7

Table 5: The total network traffic (GB) via gRPC and NVMe-oF
on one node, with co-location factor of 1 and different replication
factors.

on each server within a cgroup with 4 physical cores. The
number of background threads is therefore set to 4 (number
of cores). All other parameters remain default.

Benchmark. We evaluate RubbleDB on all YCSB [20]
workloads and five Twitter production traces [49]. Table 2
summarizes the workloads’ read-write ratio. Four clients con-
currently access all replication groups.

Baseline. For an apples-to-apples comparison, the baseline
is a replicated RocksDB system, which is configured identi-
cally to RubbleDB, except that it does not replicate SST files,
and does not include the various mechanisms RubbleDB uses
to support NVMe-oF replication (e.g., buffering at the sec-
ondary nodes, processing version edits in-order). The baseline
here would represent the standard approach of replicated key-
value stores, such as ZippyDB [17,43] and CockroachDB [42],
where each node compacts its data independently.

Evaluation metrics and terms. We use two primary eval-
uation metrics: throughput per core, which represents CPU
efficiency, and tail latency. We use two knobs replication fac-
tor (R) and co-location factor (C) to indicate the numbers of
replication groups (K), servers (M), and replicas in our exper-
iments. We define C = K

M and fix M = R , so, K =C×R. For
example, a replication factor of 3 and co-location factor of 2
means that on 3 servers (M = 3) exist 6 RocksDB instances
(K = 2×3) (2 primaries and 4 secondaries).

5.2 Performance Breakdown (Q1)
We run the YCSB load workload with a co-location factor of
1 and replication factors of 2, 3, and 4 in this section to collect
CPU, disk, and network statistics.

CPU savings. Table 3 presents the amount of CPU time the
baseline and RubbleDB spend performing compaction and
handling incoming requests. Handling requests includes both
reading and writing data from RocksDB, as well as handling
the incoming RPCs (i.e. via gRPC), buffering data on the
secondary nodes, and applying version edits.

As expected, the secondary nodes on RubbleDB consume
no CPU cycles executing compactions, while in the baseline
system, each secondary node consumes roughly the same

USENIX Association 2023 USENIX Annual Technical Conference 697

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000
Th

ro
ug

hp
ut

 p
er

 C
or

e
(o

p/
s)

13
86

4

14
22

4

17
56

2

18
07

1 34
71

2

24
91 13

62
7

87
1418

89
9

14
84

8

17
64

9

18
38

0 37
29

6

25
20 14

31
7

94
76

Baseline
Rubble

(a) Replication Factor = 2

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

14
96

0

15
41

2

25
45

4

27
08

2 47
81

2

37
42 15

22
0

90
83

24
09

1

17
13

0

25
67

9

27
08

5

53
78

1

37
37 16

60
9

10
32

8

Baseline
Rubble

(b) Replication Factor = 3

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

15
51

0

16
45

3 33
10

6

36
08

1 58
65

5

49
23 16

24
3

95
75

29
26

4

18
60

8 33
52

8

35
93

4

68
81

2

49
82 18

16
8

10
97

4

Baseline
Rubble

(c) Replication Factor = 4

Figure 7: YCSB throughput as a function of replication factor with a co-location factor of 1.

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

15
57

6

14
90

0

25
91

6

29
35

6 43
43

7

38
56 14

21
6

94
6823

28
2

15
90

9

25
85

0

29
41

2 47
11

8

38
52 14

34
8

10
34

0

Baseline
Rubble

(a) Replication factor = 2.

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

15
70

2

16
53

6 36
97

0

44
80

3 60
01

0

57
35 15

85
3

99
37

26
80

8

18
48

2 37
42

4

44
74

9

71
10

5

58
07 17

66
9

11
33

4

Baseline
Rubble

(b) Replication factor = 3.

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

15
96

6

17
24

5

47
01

4 59
84

8 72
59

5

76
87 16

58
6

99
36

30
11

0

19
36

8

47
64

7

58
71

2

89
85

3

78
50 18

64
4

11
44

8

Baseline
Rubble

(c) Replication factor = 4.

Figure 8: YCSB throughput as a function of replication factor with a co-location factor of 2.

amount of CPU cycles as the primary (there are R− 1 sec-
ondary nodes per primary). Under R=2, 3, and 4, the primary
node of RubbleDB consumes 0.8%, 4.2%, and 7.8% more
compaction CPU than the primary node of the baseline, re-
spectively. This is because the primary has to send compacted
SST files and version edits to each secondary node. The over-
head increases with the number of secondary nodes.

In terms of handling regular requests, the primary node of
RubbleDB consumes slightly more CPU (up to 7.7%) than the
baseline’s primary node, because it tags every write request
with a MemTable ID. The secondary nodes of RubbleDB
consume up to 18.8% more CPU than the baseline’s, because
of the need to buffer incoming requests and version edits.
All in all, due to the reduction in the compaction load of the
secondary nodes, RubbleDB spends 34.4%, 44.3%, and 50.5%
less time processing the same workload than the baseline with
R=2, 3, and 4, respectively.

I/O savings. Table 4 reports the amount of data read and
written by one node. Since we run the YCSB load work-
load and disable the write-ahead log, the I/O is caused by
compaction. In RubbleDB, only the primary performs com-
paction, which reads the inputs files and ships compacted
SST files to every secondary. Therefore, RubbleDB’s read
I/O keeps nearly constant, 98.0 GB on average, while its
write I/O grows with the replication factor proportionally,
averagely R×103.1 GB. Both the read and write I/O in the
baseline, however, increases with the replication factor be-
cause all nodes perform compaction. So, RubbleDB saves
more read I/O with a higher replication factor, up to 44.2%

Cluster2 Cluster15Cluster19Cluster27Cluster31
Twitter Workload

0
25000
50000
75000

100000
125000
150000
175000
200000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

19
99

34

18
92

4

35
40

4 56
10

2

32
32

9

19
92

74

31
73

5

44
27

1 70
50

8

44
06

3

Baseline
Rubble

(a)

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e

(o
p/

s)

16
06

0

18
50

2 38
03

3

48
97

0

51
22

9

58
97 17

13
2

11
90

1

22
73

7

19
94

5 38
87

1 51
05

1

58
79

0

59
61 17

96
2

13
14

5

Baseline
Rubble

(b)
Figure 9: Throughput on (a) Twitter cluster traces with a replication
factor of 3 and co-location factor of 1, and (b) YCSB using Optane
SSD with a replication factor of 2 and co-location factor of 2.

when R = 4. There is a modest increase (12.9% at most) in
write I/O due to the padding of SST files in RubbleDB, which
increases the amount of data that is written for each SST file.
We leave reducing the overhead of padding to future work.
Network overhead. Table 5 presents both the gRPC and
NVMe-oF traffic. The former consists of forwarding key-
value requests and version edits, while the latter includes
shipping SST files. The network overhead in RubbleDB in-
cludes: (a) sending version edits by gRPC and (b) shipping
SST files via NVMe-oF. We approximate (b) by calculating
the total volume of shipped SST files. From Table 5, (a) is
negligible, and (b) is close to the compaction write I/O.

5.3 End-to-end Performance (Q2, Q3)
Throughput with YCSB. Figures 7 and 8 compare the
throughput per core of RubbleDB with the baseline under
the load and YCSB workloads, with a co-location factor of
1 and 2, respectively. RubbleDB consistently provides the

698 2023 USENIX Annual Technical Conference USENIX Association

40 45 50 55 60 65 70 75 80
Request Rate (Kop/sec)

0
20000
40000
60000
80000

100000
120000
140000

99
%

 L
at

en
cy

 (m
s)

Baseline Update
RubbleDB Update
Baseline Read
RubbleDB Read

Figure 10: 99% Latency of YCSB A with replication factor of 3 and
co-location factor of 1.

same or higher throughput per core compared to the baseline,
and has a higher relative speedup for workloads with a high
percentage of writes.

As the replication factor increases, RubbleDB provides
higher relative gains. For example, under the load workload
with a co-location factor of 2, a replication factor of 4 (Fig-
ure 7c) yields a speedup of 1.9×, while the speedup of R = 2
is 1.5×. The reason is that with higher replication factors, the
baseline spends more secondary cores cycles per replication
group executing compactions, while RubbleDB experiences
a very marginal increase in the primary’s CPU consumption
(due to the need of shipping SST files to additional secondary
nodes). Therefore, with a higher replication factor, RubbleDB
has the ability to marshal more available CPU cycles belong-
ing to the freed up secondary node cores, in order to process
more incoming requests. In addition, RubbleDB achieves
higher absolute throughput and speedup with a co-location
factor of 2. The reason is that with more co-located replica-
tion groups, RubbleDB is better able to utilize the CPU, since
there are more available pending tasks to execute at any given
time.

Throughput with Twitter traces. We measure RubbleDB’s
throughput on five Twitter traces3 with different read-write ra-
tios, including cluster 2, 15, 19, 27, and 31 [49]. As Figure 9a
shows, for write-heavy traces, RubbleDB provides a speedup
of 1.7× and 1.4× in clusters 15 and 31, respectively. For
cluster 19 and 27, which are ready-dominant, RubbleDB still
achieves a 1.3× speedup. These results are largely consistent
with the YCSB results.

Tail latency. RubbleDB provides better tail latency than the
baseline when there are many compactions. Prior work has
shown that compaction jobs interfere with request processing,
leading to high tail latencies [12, 13]. Since RubbleDB sig-
nificantly reduces the overall compaction load, as a result, it
decreases the chance that compactions interfere with regular
requests.

Figure 10 shows the 99th percentile latency under the
YCSB A workload with 3 replicas and a co-location factor
of 1, RubbleDB reduces 99th percentile latency of updates
and reads by 11.5%-92.1% and 18.4%-93.4%, respectively.

3We sample 30GB records from the traces as we have 3 replication groups

100 200 300 400 500 600
Time (s)

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (o

p/
s)

Figure 11: Throughput when a node fails under YCSB load.

The absolute latency is high because our system uses a batch
size of 1,000 in evaluation, which means each replica returns
a reply after processing all 1,000 requests in a batch. Since
write requests go though all replicas sequentially, the update
latency will be 3× higher than read latency. We also observe
one data point (updates at 40 Kop/sec) showing 14.2% tail
latency degradation. This is because out-of-order writes will
be cached in the request buffer. Such queuing overhead only
appears under light compaction pressure.

Object size. By default, YCSB uses 1 KB objects. When
we run YCSB with smaller objects, which are typical in many
datacenter settings [11, 17, 49] RubbleDB consistently pro-
vides even higher speedups, because a larger fraction of CPU
time is spent on compacting data. For example, under YCSB
load with a replication factor of 3 and co-location factor of
1, RubbleDB exhibits a 1.6× speedup with 100 B objects
compared to a 1.5× speedup with 1 KB objects.

Different storage devices. We try to understand whether
a different type of storage device affects RubbleDB’s perfor-
mance. To this end, we run RubbleDB and the baseline on
two d750 servers from CloudLab, each of which use Intel
Optane SSD P5800X, an SSD with single-digit µs average
latencies.We run the experiment with a replication factor of
2 and co-location factor of 2. We are only able to run this
experiment with two servers, because of the low availability
of Optane SSD on CloudLab.

The results are presented in Figure 9b. Interestingly, the
usage of low-latency storage does not materially affect Rub-
bleDB’s speedup. While the absolute throughput numbers
for read-heavy workloads are higher (for an apples-to-apples
comparison compare this experiment with Figure 8a), in the
load workload the results are nearly identical. The reason is
that while Optane SSD has much better latency than the enter-
prise SSD we use in the other experiments, its bandwidth is
relatively similar, and in the case of LSM trees, write through-
put will be determined by disk I/O bandwidth rather than
I/O latency, since disk writes are sequential and large. We
conclude that RubbleDB provides speedups on very different
types of storage devices.

5.4 Recovery Performance (Q4)
To test RubbleDB’s recovery from failure, we run a 3-node
setup with a single replication group, and kill one of the tail

USENIX Association 2023 USENIX Annual Technical Conference 699

secondary nodes. We follow the recovery algorithm in [45],
which designates the “middle” secondary node as the new tail.
We plot the throughput over time in Figure 11. As the figure
shows, due to the nature of chain replication RubbleDB is
still able to service requests throughout the period when the
node is down. In total, it takes about a minute and a half for
the cluster to get back to its full throughput capacity.

6 Related Work

We split the related work into two categories: (a) replicated
key-value stores, (b) systems that share data with different
protocols, e.g., NVMe-oF and RDMA.

Replicated key-value stores. The typical design of repli-
cated key-value stores and databases, such as ZippyDB [17,22,
43], CockroachDB [42], MongoDB [6] and Cassandra [31],
is to implement a replication layer on top of multiple single-
instance key-value stores, such as RocksDB [8], LevelDB [4]
and WiredTiger [9]. In all these systems, all nodes that store
up backup copies of data perform their own compactions,
leading to high CPU and disk read I/O consumption.

There are several prior systems that do some form of com-
paction offloading. Ahmad et al. [10] propose offloading large
compactions in HBase to a remote compaction server in or-
der to reduce load on the primary nodes serving incoming
requests. Hailstorm [14], separates the storage and compute
layers, and offloads compaction to nodes that have a low load
in a peer-to-peer fashion. Both of these systems allow shifting
the computational load of compactions from an overloaded
node to an underloaded one, but unlike RubbleDB do not
reduce the total compaction load on the cluster by running
compaction only once for replicated data.

Closer to RubbleDB, Tebis [46] is a replicated key-value
store that reduces CPU consumption by avoiding compacting
data multiple times for each replicated chunk of data. How-
ever, Tebis has several major design differences from Rub-
bleDB and therefore faces different challenges. First, Tebis’
design is based on a key-value architecture that separates keys
from values [33]. Therefore, secondaries need to rewrite all
the pointers in the indices. Due to the choice of key-value sep-
aration, Tebis cannot be applied to standard key-value stores
that do not separate keys from values, such as RocksDB, Lev-
elDB or WiredTiger. In addition, while key-value separation
provides significant gains with large objects, it can degrade
performance for small object workloads, which are common
in datacenters [11, 17, 49]. Second, in Tebis, only the primary
processes requests, whereas secondary nodes merely store
replicated SST files. So, Tebis does not encounter the appli-
cation inconsistency issue in RubbleDB. Third, instead of
NVMe-oF, Tebis uses RDMA with local writes to ship SSTs,
which cannot leverage the offloading feature of the NIC. Also,
Tebis does not need to deal with inconsistencies caused by
the file system.

Storage systems that use NVMe-oF. Several systems use
NVMe-oF to access data from remote blocks [5, 15, 27], but
only allow each application instance to exclusively access
their SSDs. Therefore, these systems do not allow a primary
node to replicate to a secondary node’s disk directly over
NVMe-oF. In other words, unlike RubbleDB, in order to repli-
cate data, these systems require the primary to go through the
entire application software stack of the secondary nodes.

Storage systems that use RDMA. Similar to NVMe-oF,
the RDMA protocol allows one host to access the other hosts’
memory without the CPU involvement of the target. There are
a large number of in-memory systems that exploit RDMA for
faster operations [23,28,35,44]. While both one-sided RDMA
and NVMe-oF may introduce synchronization challenges
at the target, the challenges are different, since NVMe-oF
operates directly on block storage, potentially introducing
corruptions to the local file system at the target.

Shared file systems. Shared file systems [26, 36, 48] pro-
vide users across different servers with a consistent view of
a file system. However, providing a consistent file system
abstraction across multiple nodes can come at a significant
performance and scalability cost [30]. Since replicated key-
value stores do not require a full synchronized file system
interface across nodes, running them over a distributed file
system would incur unnecessary overhead.

7 Conclusions
This work explores how to utilize NVMe-oF, a CPU-efficient
networked storage protocol, for a common storage use case,
replication. The main challenge in using NVMe-oF for repli-
cation is that data might need to be read by the target node in
parallel to the replication process, introducing inconsistency
both at the file system and application level. We demonstrate
how such inconsistencies can be addressed in the context of
a replicated LSM tree-based key-value storage system, Rub-
bleDB, using two primary mechanisms: file pre-allocation
and application data structure synchronization. We believe
our ideas can be applied in other common storage settings,
such as distributed file systems (e.g., HDFS [16], Ceph [48])
and for storage or application backup. In addition, with the
trend of NIC accelerators becoming more powerful in contrast
with the plateauing of CPU performance, we anticipate using
NVMe-oF for common storage operations will become even
more attractive in the future.

8 Acknowledgments
We thank our shepherd, Philippe Bonnet, and our anonymous
reviewers for their valuable feedback and suggestions. We also
thank Muli Ben-Yehuda, Jianan Luo and Michael J. Freedman
for their helpful feedback during the project. This work was
supported by NSF award CNS #2106530 and ARO award
W911NF-21-1-0078 and was conducted on CloudLab.

700 2023 USENIX Annual Technical Conference USENIX Association

References
[1] Alibaba Cluster Trace 2018. https://github.com/

alibaba/clusterdata/blob/master/cluster-

trace-v2018/trace_2018.md.

[2] Apache Cassandra. http://cassandra.apache.org/.

[3] gRPC. https://grpc.io/.

[4] LevelDB. http://leveldb.org/.

[5] LightBits Labs. https://www.lightbitslabs.com/.

[6] MongoDB. https://www.mongodb.com/.

[7] NVIDIA’s NVMe-oF Target Offload Configura-
tion. https://enterprise-support.nvidia.com/
s/article/howto-configure-nvme-over-fabrics-

-nvme-of--target-offload.

[8] RocksDB. https://rocksdb.org/.

[9] WiredTiger Storage Engine. https://

www.mongodb.com/docs/manual/core/wiredtiger/.

[10] Muhammad Yousuf Ahmad and Bettina Kemme. Com-
paction management in distributed key-value datastores.
Proceedings of the VLDB Endowment, 8(8):850–861,
2015.

[11] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64.
ACM, 2012.

[12] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating synergies
between memory, disk and log in log structured key-
value stores. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 363–375, Santa Clara,
CA, July 2017. USENIX Association.

[13] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 753–766,
2019.

[14] Laurent Bindschaedler, Ashvin Goel, and Willy
Zwaenepoel. Hailstorm: Disaggregated compute
and storage for distributed LSM-based databases.
In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page
301–316, New York, NY, USA, 2020. Association for
Computing Machinery.

[15] Tim Bisson, Ke Chen, Changho Choi, Vijay Balakrish-
nan, and Yang-suk Kee. Crail-KV: A high-performance
distributed key-value store leveraging native KV-SSDs
over NVMe-oF. In 2018 IEEE 37th International Per-
formance Computing and Communications Conference
(IPCCC), pages 1–8, 2018.

[16] Dhruba Borthakur. HDFS architecture guide. Apache
Hadoop project, 53(1-13):2, 2008.

[17] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
RocksDB key-value workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[18] Asaf Cidon, Robert Escriva, Sachin Katti, Mendel
Rosenblum, and Emin Gun Sirer. Tiered replica-
tion: A cost-effective alternative to full cluster geo-
replication. In 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15), pages 31–43, 2015.

[19] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin
Katti, John Ousterhout, and Mendel Rosenblum. Copy-
sets: Reducing the frequency of data loss in cloud stor-
age. In Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 37–48,
San Jose, CA, 2013.

[20] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. SIGOPS Operating Systems Re-
view, 41(6):205–220, October 2007.

[22] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. RocksDB: Evolution of Development Priorities
in a Key-Value Store Serving Large-Scale Applications.
ACM Trans. Storage, 17(4), oct 2021.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014.

[24] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuang-Ching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

USENIX Association 2023 USENIX Annual Technical Conference 701

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
http://cassandra.apache.org/
https://grpc.io/
http://leveldb.org/
https://www.lightbitslabs.com/
https://www.mongodb.com/
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://rocksdb.org/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.mongodb.com/docs/manual/core/wiredtiger/

Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of cloudlab. In Dahlia Malkhi and Dan
Tsafrir, editors, 2019 USENIX Annual Technical Confer-
ence, USENIX ATC 2019, Renton, WA, USA, July 10-12,
2019, pages 1–14. USENIX Association, 2019.

[25] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Ex-
ploiting Nil-Externality for Fast Replicated Storage. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP 21), page 440–456,
Virtual Event, Germany, 2021.

[26] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples, pages 29–43, 2003.

[27] Daegyu Han and Beomseok Nam. Improving access
to HDFS using NVMeoF. In 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pages
1–2. IEEE, 2019.

[28] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 295–306, 2014.

[29] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for nonvolatile memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005, 2018.

[30] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-
flex: Remote flash ≈ local flash. In Proceedings
of the Twenty-Second International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 345–359, New
York, NY, USA, 2017. ACM.

[31] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40, apr 2010.

[32] Yongkun Li, Zhen Liu, Patrick PC Lee, Jiayu Wu, Yin-
long Xu, Yi Wu, Liu Tang, Qi Liu, and Qiu Cui. Dif-
ferentiated key-value storage management for balanced
I/O performance. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 673–687, 2021.

[33] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating keys from values in
SSD-conscious storage. In 14th USENIX Conference
on File and Storage Technologies (FAST 16), pages 133–
148, Santa Clara, CA, February 2016.

[34] Arif Merchant. Keynote address II, INFLOW 2014:
Optimal flash partitioning for storage workloads in
Google’s Colossus file system. 2014.

[35] Diego Ongaro, Stephen M Rumble, Ryan Stutsman,
John Ousterhout, and Mendel Rosenblum. Fast crash
recovery in RAMCloud. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Princi-
ples, pages 29–41, 2011.

[36] Alex Osadzinski. The network file system (nfs). Com-
puter Standards & Interfaces, 8(1):45–48, 1988.

[37] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (LSM-tree).
Acta Informatica, 33(4):351–385, 1996.

[38] W Curtis Preston. Backup and Recovery: Inexpensive
Backup Solutions for Open Systems. O’Reilly Media,
Inc., 2007.

[39] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building key-value
stores using fragmented log-structured merge trees. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, page 497–514, New York,
NY, USA, 2017. Association for Computing Machinery.

[40] Robert Ricci, Eric Eide, and CloudLab Team. Intro-
ducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications. login Usenix Mag.,
39(6), 2014.

[41] Russell Sears, Mark Callaghan, and Eric Brewer. Rose:
Compressed, log-structured replication. Proceedings of
the VLDB Endowment, 1(1):526–537, 2008.

[42] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. CockroachDB: The
resilient geo-distributed SQL database. In Proceedings
of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 1493–1509,
New York, NY, USA, 2020. Association for Computing
Machinery.

[43] Amy Tai, Andrew Kryczka, Shobhit O Kanaujia, Kyle
Jamieson, Michael J Freedman, and Asaf Cidon. Who’s
afraid of uncorrectable bit errors? online recovery of
flash errors with distributed redundancy. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 977–992, 2019.

[44] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them

702 2023 USENIX Annual Technical Conference USENIX Association

remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48, 2020.

[45] Robbert Van Renesse and Fred B Schneider. Chain repli-
cation for supporting high throughput and availability.
In USENIX OSDI, volume 4, 2004.

[46] Michalis Vardoulakis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tebis: index
shipping for efficient replication in LSM key-value
stores. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 85–98, 2022.

[47] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Building
an elastic query engine on disaggregated storage. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 449–462, Santa Clara,
CA, February 2020. USENIX Association.

[48] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320, 2006.

[49] Juncheng Yang, Yao Yue, and KV Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
191–208, 2020.

USENIX Association 2023 USENIX Annual Technical Conference 703

	Introduction
	Background and Motivation
	The High Cost of Compactions
	Motivation for Using NVMe-oF

	Challenges
	Design and Implementation
	Replicator Layer
	Replication Groups
	File Pre-allocation
	LSM Tree Synchronization

	Implementation Details

	Evaluation
	Experimental Setup
	Performance Breakdown (Q1)
	End-to-end Performance (Q2, Q3)
	Recovery Performance (Q4)

	Related Work
	Conclusions
	Acknowledgments

