
Memtrade: Marketplace for Disaggregated Memory Clouds
Hasan Al Maruf

University of Michigan
USA

Yuhong Zhong
Columbia University

USA

Hongyi Wang
Columbia University

USA

Mosharaf Chowdhury
University of Michigan

USA

Asaf Cidon
Columbia University

USA

Carl Waldspurger
Carl Waldspurger Consulting

USA

ABSTRACT
We present Memtrade, the first practical marketplace for disaggre-
gated memory clouds. Clouds introduce a set of unique challenges
for resource disaggregation across different tenants, including re-
source harvesting, isolation, and matching. Memtrade allows pro-
ducer virtual machines (VMs) to lease both their unallocated mem-
ory and allocated-but-idle application memory to remote consumer
VMs for a limited period of time. Memtrade does not require any
modifications to host-level system software or support from the
cloud provider. It harvests producer memory using an application-
aware control loop to form a distributed transient remote memory
pool with minimal performance impact; it employs a broker to
match producers with consumers while satisfying performance con-
straints; and it exposes the matched memory to consumers through
different abstractions. As a proof of concept, we propose two such
memory access interfaces for Memtrade consumers – a transient
KV cache for specified applications and a swap interface that is
application-transparent. Our evaluation shows that Memtrade pro-
vides significant performance benefits for consumers (improving
average read latency up to 2.8×) while preserving confidentiality
and integrity, with little impact on producer applications (degrading
performance by less than 2.1%).
ACM Reference Format:
Hasan Al Maruf, Yuhong Zhong, Hongyi Wang, Mosharaf Chowdhury, Asaf
Cidon, and Carl Waldspurger. 2023. Memtrade: Marketplace for Disaggre-
gated Memory Clouds. In Abstract Proceedings of the 2023 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’23 Abstracts), June 19–23, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3578338.3593553

1 MOTIVATION
Cloud resources are increasingly being offered in an elastic and
disaggregatedmanner. Memory, however, is still largely provisioned
statically, especially in public cloud environments. In public clouds,
a user launching a new VM typically selects from a set of static,
pre-configured instance types, each with a fixed number of cores
and a fixed amount of DRAM. Although some platforms allow users
to customize the amount of virtual CPU and DRAM, the amount
remains static throughout the lifetime of the instance. Even in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’23 Abstracts, June 19–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0074-3/23/06.
https://doi.org/10.1145/3578338.3593553

serverless frameworks, which offer elasticity and auto-scaling, a
function has a static limit on its allocation of CPU and memory.

Long-running applications deployed on clouds are commonly
highly over-provisioned relative to their typical memory usage. For
example, cluster-wide memory utilization in Google, Alibaba, and
Meta datacenters hovers around 40%–60%. Large-scale analytics
service providers that run on public clouds, such as Snowflake,
fare even worse – on average 70%–80% of their memory remains
unutilized. Moreover, in many real-world deployments, workloads
rarely use all of their allocated memory all of the time. Often, an
application allocates a large amount of memory but accesses it infre-
quently. For example, in Google’s datacenters, up to 61% of allocated
memory remains idle [3]. In Meta’s private datacenters, within a
10-minutes window, applications use only 30–60% of the allocated
memory [7]. Since DRAM is a significant driver of infrastructure
cost and power consumption, excessive underutilization leads to
high capital and operating expenditures, as well as wasted energy
(and carbon emissions). Although recent remote memory systems
address this by satisfying an application’s excess memory demand
from an underutilized server [1, 2, 4, 6], existing frameworks are
designed for private datacenters.

Furthermore, with the emergence of coherent interfaces like
Compute Express Link (CXL), next-generation datacenter designs
are moving towards tiered-memory subsystems [5, 7]. Servers
within a rack can be connected through CXL switches and access
each other memory. In such a system, CPUs of one server will have
access to heterogeneous memory types with varied latency, band-
width, and performance characteristics. While running multiple
applications in such a rack-scale system, system-wide application-
level performance will highly depend on an application’s share to
different memory tiers. Efficiently rightsizing different memory
tiers, moving cold pages from faster to slower memory tiers, and
matching harvested memories on different tiers to appropriate ap-
plications with a view to ensuring performance is challenging in
such a disaggregated system.

In this regards, we introduce Memtrade that harvests both un-
allocated and allocated-but-idle application memory to realize a
practical remote memory marketplace in both public clouds.

2 DISAGGREGATION CHALLENGES IN
PUBLIC CLOUDS

Realization of Memtrade must address following challenges:
• Immediately Deployable. In many cases (e.g., public cloud
setting, server configuration restrictions), a tenant cannot mod-
ify host-level system software which would require the oper-
ator to manage the remote memory service. In addition, prior

1

https://doi.org/10.1145/3578338.3593553
https://doi.org/10.1145/3578338.3593553
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3606376.3593553&domain=pdf&date_stamp=2023-06-27


SIGMETRICS ’23 Abstracts, June 19–23, 2023, Orlando, FL, USA Hasan Al Maruf et al.

work assumes the latest networking hardware and protocols (e.g.,
RDMA) [1–4, 6]; availability of these features in public clouds is
limited, restricting adoption.

• Efficient Harvesting. Memory harvesting needs to be light-
weight, transparent and easily deployable without impacting
performance. Most prior work includes only a VM’s unallocated
memory in the remote memory pool. Leveraging idle application-
level memory – allocated to an application but later unused or
accessed infrequently – significantly enhances remote memory
capacity. Existing cold page detection-based [3] proactive page
reclamation techniques need significant CPU and memory re-
sources, along with host kernel or hypervisor modifications [7].

• Performant Consumption. To ensure producer-side perfor-
mance, Memtrade must return a producer’s harvested memory
seamlessly when needed. Memory offered to consumers may also
disappear due to a sudden burst in the producer’s own memory
demand, or if a producer leaves unexpectedly. Memtrade needs
to manage this unavailability to provide a high-performance
memory interface.

• Incentivization and Resource Matching. Unlike prior work,
which assumes cooperative applications, in a public cloud set-
ting, we need to create a market where producers and con-
sumers have monetary incentives to participate. Producers must
be compensated for leasing memory, and the price must be at-
tractive to consumers compared to alternatives (e.g., existing
in-memory caching services or spot instances). In addition, pro-
ducers have varied availability and bursty workload demands,
while consumers may have their own preferences regarding re-
mote memory availability, fragmentation, network overhead,
and application-level performance, all which must be considered
when matching producers to consumers.

3 MEMTRADE: OVERVIEW
Memtrade is an ubiquitous solution that allows users hop on any
existing machine and readily deploy it without disrupting the run-
ning application(s) and modifying the underline kernel. It consists
of three core components: (i) producers, which expose their har-
vested idle memory to the remote-memory market; (ii) the broker,
which pairs producers with consumers while optimizing cluster-
wide objectives, such as maximizing resource utilization; and (iii)
consumers, which request remote-memory allocations based on
their demand and desired performance characteristics.

Producers. A producer employs a collection of processes to har-
vest idle memory within a VM, making it available to the remote-
memory market. A producer voluntarily participates in the market
by first registering with the broker. The producer then monitors
its resource usage and application-level performance metrics, peri-
odically notifying the broker about its resource availability. When
the broker matches a consumer’s remote memory request to the
producer, it is notified with the consumer’s connection creden-
tials and the amount of requested memory. The producer then
exposes harvested memory through fixed-sized slabs dedicated to
that consumer. A producer may stop participating at any time by
deregistering with the broker.

Broker. The broker arbitrates between producers and con-
sumers, matching supply and demand for harvested remotememory

while considering consumer preferences and constraints. While
Memtrade supports untrusted producers and consumers from di-
verse tenants, its logically-centralized broker component should
be run by a trusted third party – such as a caching-as-a-service
provider or the public cloud operator. The broker decides on the
per-unit remote memory price for a given lease time, based on mon-
itoring the current price of spot instances offered in the same public
cloud. Appropriate pricing provides incentives for both producers
and consumers to participate in the market; the broker receives a
cut of the monetary transactions it brokers as commission.

Consumers. A consumer voluntarily participates in the remote-
memory market by registering its connection credentials with the
broker. Once approved by the broker, the consumer can submit a
remote memory request by specifying its required remote mem-
ory, lease time, and preferences. After matching the request with
one or more producers, the consumer then communicates directly
with assigned producers through a simple KV cache GET / PUT /
DELETE interface to access remote memory. We also implement a
transparent remote-paging interface for the consumer. To ensure
confidentiality and integrity of consumer data stored in producer
memory, consumer interfaces offer an optional cryptographically
access to remote memory in a transparent manner.

4 KEY RESULTS
We evaluate Memtrade using both synthetic and real-world cluster
traces. The key results of our evaluation are as follow:
• Memtrade can harvest significant amounts of memory, even from
right-sized VMs. A notable portion of the total harvested memory
is extracted from the application’s idle memory (on average, 1.1–
51.4% across the entire workload) at a lower application-level
performance degradation cost of 0–1.6%. Producer-side CPU and
memory overheads due to the harvester are less than 1%.

• broker arbitrates between consumers and producers and benefits
the both. In a simulated marketplace, involvement of broker
increases the cluster-wide memory utilization from 56.8% to
97.9%, consumer hit ratios improve by a relative 18.2%, and the
consumer’s cost of renting extra memory reduces by an average
of 82.1% compared to using spot instances.

• Memtrade improves consumer average latency by up to 2.8×,
while impacting producer latency by less than 2.1%, and improves
memory utilization (up to 97.9%).

REFERENCES
[1] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and A. Kolli.

Rethinking software runtimes for disaggregated memory. In ASPLOS, 2021.
[2] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient memory disaggre-

gation with Infiniswap. In NSDI, 2017.
[3] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang, A. Chau-

gule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and P. Ranganathan.
Software-defined far memory in warehouse-scale computers. In ASPLOS, 2019.

[4] Y. Lee, H. A. Maruf, M. Chowdhury, A. Cidon, and K. G. Shin. Hydra : Resilient
and highly available remote memory. In FAST, 2022.

[5] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst, P. Zardoshti, M. Shah, S. Rajadnya,
S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini. Pond: CXL-based
memory pooling systems for cloud platforms. 2023.

[6] H. A. Maruf and M. Chowdhury. Effectively Prefetching Remote Memory with
Leap. In USENIX ATC, 2020.

[7] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhattacharya,
C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan. TPP: Transparent page
placement for CXL-enabled tiered memory, 2022.

2


	Abstract
	1 Motivation
	2 Disaggregation Challenges in Public Clouds
	3 Memtrade: Overview
	4 Key Results
	References



