
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Chardonnay: Fast and General Datacenter
Transactions for On-Disk Databases

Tamer Eldeeb and Xincheng Xie, Columbia University; Philip A. Bernstein,
Microsoft Research; Asaf Cidon and Junfeng Yang, Columbia University

https://www.usenix.org/conference/osdi23/presentation/eldeeb

Chardonnay: Fast and General Datacenter Transactions for On-Disk
Databases

Tamer Eldeeb
Columbia University

Xincheng Xie
Columbia University

Philip A. Bernstein
Microsoft Research

Asaf Cidon
Columbia University

Junfeng Yang
Columbia University

Abstract

Distributed on-disk database systems could either use an
expensive commit protocol like two-phase commit (2PC)
to guarantee atomicity, and suffer from slow distributed
transactions, or forgo 2PC, which lead to weaker se-
mantics, limitations to the programming model, or con-
strained scalability, making the system less general. We
argue this compromise is no longer necessary within
modern datacenters. Low latency 2PC (∼150 µs on
Azure for 2PC over Paxos) can be achieved using low-
latency storage for the relatively small transaction logs,
fast RPCs, and careful protocol design. With fast 2PC,
the data contention bottleneck for many transactions
shifts from 2PC to reading the data itself from the rel-
atively slow storage while holding transaction locks.

We present Chardonnay, a scalable, on-disk, multi-
versioned transactional key-value store optimized for
single datacenter deployments with fast 2PC. Chardon-
nay has a general interface supporting point reads, scans,
and writes within multi-step strictly serializable ACID
transactions. The key mechanism underlying Chardon-
nay’s design is strongly consistent snapshot reads on
commodity hardware, using a novel lock-free read proto-
col. Chardonnay uses this protocol to cheaply determine
the read-write sets of queries, enabling Chardonnay to
transparently prefetch data needed for a transaction prior
to the execution of the transaction and the acquisition of
locks. This enables Chardonnay to achieve fast transac-
tions by minimizing contention, and avoids aborts due to
deadlocks by ordering lock requests.

1 Introduction

The holy grail of distributed databases is to provide an
abstraction of a single-server database that can run SQL
ACID transactions at high performance while maintain-
ing high availability. Recent work [27, 33, 47, 52, 57,
69, 81, 82, 84] shows that ACID distributed transactions

with strong isolation and consistency semantics can be
made efficient and scalable within in-memory database
systems. However, keeping all data in memory can be
prohibitively expensive, especially for large applications,
as DRAM’s cost per GB is over 10–50× more expensive
than regular (e.g., TLC or QLC) NAND SSD [34].

Therefore, due to their significantly lower cost, many
applications use distributed databases [11, 12, 29, 74],
which store their data on disk-based storage engines such
as RocksDB [8, 32, 58] or LevelDB [7]. The classic ar-
chitecture for such systems [65], popularized by System
R* [59], is to shard the data horizontally across a collec-
tion of shared-nothing machines, and use a distributed
commit protocol such as two-phase commit (2PC) [48]
to ensure atomicity of distributed ACID transactions.
Unfortunately, distributed transactions in these systems
have significant performance limitations [17, 30, 42, 52,
57, 76, 81].

Due to these challenges, many scale-out on-disk sys-
tems avoid providing any multi-key ACID transaction
support at all [26, 31], or limit it to local transactions ac-
cessing keys within a single machine or partition [23,61].
Other systems offer support for distributed transactions,
but forgo 2PC and sacrifice generality in one or more
ways, e.g., by offering weaker semantics [16, 54, 78, 79],
restricting the programming model [76], or employing
an architecture that limits system scalability [13, 49, 87].
Nevertheless, due to strong developer demand [14],
many popular SQL DBMSes now support general dis-
tributed ACID transactions [11, 29, 74], despite being a
lot slower than local transactions. Table 1 shows the
trade-offs made by various popular on-disk systems.

We argue that this compromise between performance
and generality is no longer necessary within the modern
datacenter. The high performance penalty of 2PC his-
torically has been due to the high latency of RPCs and
flushing log entries to disk. Fortunately, neither is the
case any more. Modern datacenter networks are fast [22],
and systems such as eRPC [46] have demonstrated that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 343

System Serializabile Linearizable General API Distributed TX High Contention

Spanner [29] Slow X
Calvin [76] X Fast

FoundationDB [87] Fast X
Hyder [21] X N/A X

Aurora (Multi-Master) [78] X X N/A Partitionable Workloads
Chardonnay Fast

Table 1: Comparison of representative on-disk distributed database systems.

RPCs can run at single-digit µs latency within the data-
center even without using RDMA. Additionally, storage
devices based on low-latency SLC NAND [10] or 3DX-
point [1] also provide single-digit µs latencies [6, 9, 10],
making them ideal for persisting database logs.1 Further-
more, many recent frameworks [45, 66, 83, 85, 86] fully
or partially bypass the Linux I/O software stack, further
boosting I/O performance.

This leads us to revisit the assumption that 2PC is the
primary bottleneck inherent in scale-out on-disk database
system designs. However, using a fast 2PC protocol re-
veals new bottlenecks. As we show in §4, even eliminat-
ing the entire latency of the commit protocol is not suffi-
cient to achieve good performance for high-contention
workloads, because transactions frequently hold locks
while fetching cold items from storage. Therefore, the
data contention bottleneck shifts to reading the data from
disk, since reading data from a typical SSD can be orders
of magnitude slower than the network.

We present Chardonnay, a distributed multi-version
transactional key-value store that is deliberately tai-
lored for this new era of fast 2PC. Chardonnay is de-
signed for single-datacenter deployments, since cross-
datacenter 2PC latency would be high. It supports point
and range reads, as well as writes, within classical multi-
step strictly serializable ACID transactions, making it
suitable as the storage engine for a SQL database (e.g.,
similar to CockroachDB [74]). Chardonnay uses the
classic shared-nothing architecture2 and uses strict two-
phase locking (2PL) [37] to guarantee strict serializabil-
ity [43] for read-write transactions, as well as 2PC to en-
sure atomicity for distributed transactions.

The core insight of Chardonnay is that fast RPCs
enable strictly serializable lock-free snapshot queries
within the datacenter in a general fashion, i.e., without
using specialized clocks, limiting scalability, or weaken-
ing the performance and semantics of read-write trans-
actions. Low-latency, high-throughput RPCs are key
to allow all committing transactions in Chardonnay to

1It is of course possible to store the entire database on such devices,
but they cost significantly more than commodity SSDs.

2Which, we posit, has aged like fine wine.

cheaply read a counter, called the epoch, that serves as
a global serialization point. The system increments the
epoch periodically, independent of transactions, so un-
like designs with a centralized sequencer [18, 87], main-
taining the epoch can be distributed and highly scalable.
The main challenge is that unlike systems with a sin-
gle global log or coordinator, Chardonnay uses one log
per partition, so it cannot enforce global epoch order-
ing of commits. Instead, we co-design the snapshot read
and commit protocols to guarantee their equivalence to
epoch ordering (§6). The idea is rather simple: Snapshot
queries may block waiting for write locks to be released
(once) for correctness, but they do not acquire any locks,
so they do not contend with the read-write transactions.

Beyond the direct benefit of efficient, lock-free read-
only queries, this enables two important benefits, as
Chardonnay leverages this snapshot read protocol to op-
timize the execution of read-write transactions. First,
Chardonnay runs the user’s transaction in a dry run mode
using the snapshot protocol to (approximately) compute
and prefetch the transaction’s read set, which in the vast
majority of cases allows Chardonnay to shift the work
of reading cold data from storage outside of the con-
tention period of the transaction. Second, since read and
write sets can be efficiently computed using the snapshot
protocol, Chardonnay also uses them to plan the locking
scheduling in a manner that avoids deadlock aborts.

At the systems and design level, our main contribu-
tion is Chardonnay, the first (to our knowledge) on-disk
system that achieves high performance for both low and
high-contention workloads, without sacrificing strong
semantics, restricting the programming model, or lim-
iting scalability. The novel mechanisms introduced in
Chardonnay are:

1. Novel lock-free snaphsot read protocol: Chardon-
nay uses fast RPCs to guarantee strict serializabil-
ity without relying on specialized hardware, synchro-
nized clocks, making assumptions about clock skew,
or limiting scalability.

2. Automatic prefetching: Chardonnay leverages the
snapshot protocol to do a “dry run” of the query,
which loads and pins all the keys accessed by the

344 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

transaction to main memory. This allows Chardon-
nay to avoid waiting for data read from slow stor-
age while holding locks. Unlike similar schemes
introduced by prior work [3, 75, 76], Chardonnay’s
prefetching mechanism works for scans, and neither
requires changes to the user code, nor incurs signifi-
cant additional latency or contention.

3. Lightweight deadlock avoidance: By computing
read and write sets in advance, Chardonnay avoids
deadlocks by determining the lock acquisition order.

Collectively, these techniques enable Chardonnay to
have excellent performance under high contention. In-
deed, as we show in §9, Chardonnay’s throughput under
extremely high contention is only 15% lower than under
extremely low contention. In contrast, the throughput
of a baseline System R*-style system (even utilizing fast
2PC) drops by over 85%. The dry run phase adds over-
head which is largely wasteful for low contention work-
loads, but we consider this a worthwhile trade-off, and
we allow disabling dry runs on a per transaction basis.

A general takeaway is that within on-disk systems,
the availability of fast datacenter RPCs makes distributed
and multi-core system designs look increasingly similar.
Some of our ideas (epoch-based versioning) are inspired
by multi-core database systems [77]. This unlocks the
potential for adopting additional insights from multi-core
single-node systems in a distributed setting. The flow
of ideas can also go in the other direction: while dis-
tributed transactions were our primary motivation when
designing Chardonnay, the challenge of high contention
is not unique to distributed transactions, and in fact many
single-node database systems run with low isolation pre-
cisely to mitigate this issue [15]. Our results show that
Chardonnay’s techniques can be useful for them too.

2 Background

This section discusses transaction semantics and commit
protocol performance in distributed database systems.

2.1 Strict Serializability

Strict Serializability [43] (also known as External Con-
sistency [29]) is considered the gold standard of dis-
tributed transaction semantics. It is the combination of
the following two properties [69]:

• Serializability: every execution is equivalent to
some serial ordering of committed transactions.

• Linearizability: if transaction A commits before
transaction B starts, then A should precede B in the
equivalent serial ordering.

2.2 2PC Recap
Two-phase commit (2PC) is a classic commit protocol
with many variants [48]. The basic flow works as fol-
lows: after a transaction finishes execution on multiple
participant servers or shards, a coordinator starts the first
phase by issuing Prepare RPCs to all participant. Each
participant can vote yes or no in response to the RPC,
where a yes vote is a promise by the participant that it
will not unilaterally abort the transaction and will be able
to (eventually) commit the transaction when asked. Be-
fore voting yes to a Prepare RPC, the participant typi-
cally persists all of the transactions writes to a durable
log so it can recover from any failures. If any partici-
pant votes no (or never responds due to failures or time-
outs), the coordinator aborts the transaction. Otherwise,
it logs the decision to commit to durable storage and then
runs the second phase of the protocol by issuing Commit
RPCs to the participants so they can apply the transaction
and release locks. A well known problem of 2PC is that
it is blocking [20, 70], wherein the failure of the coordi-
nator at inopportune moments prevents the participants
from making progress. This can be addressed by repli-
cating the coordinator state for availability [17, 29, 40].

2.3 The Penalty of 2PC
2PC traditionally incurs a significant performance over-
head for two main reasons. First, it requires at least two
network round trips and two synchronous log writes to
persistent storage per transaction [41, 57], which incurs
network and storage I/O overhead, as well as CPU us-
age by the TCP/IP stack [81]. For example, typical 2PC
commit latency within a single datacenter in systems like
Spanner is in the double digit milliseconds [29], which
puts a hard upper bound of less than 100 TPS on transac-
tions that update a write-hot record. Second, the coordi-
nation necessary to guarantee isolation can significantly
decrease concurrency, leading to performance degrada-
tion, as well as high abort rates [15]. This increased con-
tention due to 2PC is particularly harmful for short trans-
actions common in OLTP workloads, due to the high la-
tency of the commit protocol relative to the time it takes
to execute the transaction logic [76]. The impact of con-
tention is evident in locking-based concurrency control
schemes such as 2PL, but optimistic concurrency con-
trol (OCC) schemes are also not immune, and can in fact
perform worse under high contention [41, 51, 82].

3 Requirements

We now define Chardonnay’s stated objective, fast and
general transactions for on-disk databases, in more de-
tail. Fast encompasses the following requirements: First,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 345

latency for short OLTP transactions should be low (hun-
dreds of µs) regardless of whether it is single partition
or cross-partition; hence the performance penalty of dis-
tributed transactions should be relatively small. Sec-
ond, the system needs to support long-running read-only
queries efficiently, without impacting OLTP read-write
transactions. Finally, the system should be able to main-
tain high throughput for both low and high contention
workloads. General means providing a general, unre-
stricted programming model and API (e.g. capable of
supporting a full SQL layer) and the highest level of se-
mantics (i.e. strict serializability) without imposing over-
all scalability limits or using specialized hardware.

4 Measuring Contention Footprint

Data contention is a major issue for traditional on-disk
shared-nothing distributed database designs. Most real-
world workloads have low contention most of the time,
but occasionally a small number of extremely hot data
items appear, significantly degrading overall through-
put [39, 76]. Other workloads are characterised by high
skew such that a small portion of the database receives
a majority of the load. For example, half of the NYSE
trades happen on 1% of the symbols, and breaking news
can cause a sharp spike in trades on a small group of
symbols [68]. Indeed, data contention is a bottleneck
that hinders truly scalable transaction processing, even
in RDMA-enabled in-memory distributed database sys-
tems [82], and on multi-core single-node systems [62].

Following the terminology of Calvin [76], we define
a transaction’s contention footprint as the total duration
from the instant the transaction acquires its first lock until
it releases its last lock. In this section we use YCSB [28]
to study the contention footprint of simple, single oper-
ation transactions in System R*-style systems. To this
end, we built two simple baseline systems based on the
System R* architecture on top of RocksDB, using its
transaction and 2PC support in our experiments:

• Baseline-Slow. The client invokes database func-
tions using (slow) gRPC [5]. Both the write-ahead
log (WAL) and the database are placed on a directly
attached SSD.

• Baseline-Fast. Uses (fast) eRPC (with FlatBuffers
[4] for serialization format) instead of gRPC, and
the WAL is put on an emulated fast NVMe device.

Our baseline implementations ignore crucial practical
considerations (such as replicating coordinator state for
high availability to deal with the well-known 2PC block-
ing problem), and transactions more complicated than a
single read or write. Therefore, our results underestimate
the contention footprint. Nevertheless, they are instruc-
tive. All our experiments run on Microsoft Azure VMs.
The entire key universe is assigned to a single shard. We

Baseline-Slow (10%)
Baseline-Slow (100%)

Baseline-Fast (10%)
Baseline-Fast (100%)

Chardonnay (10%)
0

200

400

600

800

1000

1200

mi
cro

se
co

nd
s

Read
Write
2PC

Figure 1: Contention footprint of YCSB read (left
bar) and write (right bar) transactions. % repre-
sent the proportion of the data in DRAM. Chardon-
nay achieves a similar contention footprint to fully in-
memory (“Baseline-Fast 100%”) with only 10% of its
data in DRAM.

run YCSB-A with 50% point reads and 50% point writes
with uniform random distribution. All experiments use
one client with 5 threads, which runs on a dedicated VM
in the same Azure region as the server. To control the
amount of DRAM used by the system, we disable the OS
page cache and vary the size of the block cache, which is
RocksDB’s read cache. We run a full 2PC at the end
of each transaction, including in the case of reads, to
measure transaction overhead, even though technically
2PC is not needed since there is only one shard. Read
transactions release locks during the Prepare phase, so
the Commit phase does not contribute to their contention
footprint. For durability, Calls to Prepare and Commit
always wait for the write to be flushed to storage.

We show how the average latency of read and write
operations each contribute to the contention footprint in
Figure 1. On Baseline-Slow, the bulk of the contention
footprint comes from running 2PC. On Baseline-Fast,
the latency of 2PC is significantly lower due to the fast
RPC library and fast log storage. The yellow bars show
that the contention footprint of read transactions is much
higher when only 10% of the dataset is in main-memory,
since the majority of reads have to fetch data from SSD
storage. Write transactions (red bars) are not much af-
fected by the available DRAM, since writes are buffered
in-memory (at the server) until the Prepare phase where
they get written to the WAL.

We deduce two takeaways from this simple exper-
iment. First, with a modern RPC library, fast intra-
datacenter network, and small amount of fast NVMe
storage, distributed databases can significantly reduce
2PC latency. Second, once the latency of 2PC is reduced,
the data contention bottleneck becomes reading the data
needed by the transaction from the relatively slow SSD.

346 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 2: Transaction Lifetime in Chardonnay.

5 Architecture

Chardonnay has four main components:
1. Epoch Service. Responsible for maintaining and

updating a single, monotonically increasing counter
called the epoch. The epoch service exposes only
one RPC to its clients, which returns the latest
epoch. Reading the epoch serves as a global se-
rialization point for all committing transactions.
The epoch is used to assign transaction timestamps
at commit time and is essential for our lock-free
strongly consistent snapshot reads (§6). The epoch
is only read, not incremented, by each transaction.

2. KV Service. The core service that stores the user
key-value data. It uses a replicated shared-nothing
range-sharded architecture similar to other modern
System R*-style systems [11, 29, 74].

3. Transaction State Store. Responsible for author-
itatively storing the transaction coordinator state in
a replicated, highly-available manner so that client
failures do not cause transaction blocking. We
chose to store the transaction state separately from
the user’s key-value data to enable 2PC latency op-
timizations, which we describe in appendix A.1.

4. Client Library. Applications link this library to ac-
cess Chardonnay. It is the 2PC coordinator, and pro-
vides APIs (Figure 3) for executing transactions.

Figure 2 illustrates how the components interact dur-
ing the lifetime of a transaction. The basic flow of a
read-write transaction is almost the same as in a classic
shared-nothing System R*-style system, except we add
step 3b to read the epoch in parallel to the Prepare phase.

5.1 Epoch Service
The epoch service is a Multi-Paxos replicated state ma-
chine maintaining a single counter, the epoch. One
replica is designated leader. It increments the epoch at a
fixed configurable time interval (e.g., 10 ms) by append-
ing an entry to the Paxos log so it is durably replicated.

It exposes one RPC, read-epoch, which returns the value
of the epoch. The system maintains the invariant:
Monotonic Epoch Invariant: If a read-epoch call re-
turns a value e, then all subsequent read-epoch calls must
return a value greater than or equal to e.

We cannot rely on simply reading the value from the
leader replica, since a leader might lose its status without
realizing it for a while. It is possible to run the client
RPCs through the Paxos state machine. However, since
each committing transaction reads the epoch, this would
be too costly. Instead, we consider the epoch updated
when it is applied to the state of a majority of replicas,
not just when it is appended to the log. The client sends
read RPCs to all replicas and considers the current epoch
value to be the one returned by a majority of the replicas.
If no value has a majority, the client retries the read.

There is a trade-off in choosing the epoch advancing
interval. It needs to be long enough compared to typical
transaction duration that the value is usually read from
the CPU caches of replicas, and without requiring retries
due to no value having a majority. On the other hand, if
it is too long, it adds to linearizable snapshot read-only
transaction latency, as we explain in §6. We find that
advancing the epoch once every 10 milliseconds works
well in our experiments.

A single core can support tens of thousands of clients
and serve up to millions of eRPC calls per second [46].
Furthermore, the client library batches multiple read-
epoch calls from multiple concurrent transactions into a
single RPC. Since each RPC does very little work (reads
a word from main memory that is usually cached), we
expect this design to be sufficient for all practical pur-
poses. Nonetheless, in the interest of generality we show
how to scale-out the epoch service in appendix A.3.

5.2 KV Service

The key universe is partitioned into disjoint contiguous
subsets called ranges. Each range is assigned to a num-
ber of range servers (e.g., three) and is comprised of a
database and a WAL that is implemented via Paxos. The
WAL is placed on a fast NVMe device for low latency,
while the database is stored on commodity SSD storage.
One of the range replicas is designated as a leader, which
holds a leader lease. It maintains a lock table to im-
plement two-phase locking, using existing range locking
techniques [50, 55]. All reads and writes go through the
leader.

To simplify the description in this paper we will as-
sume the ranges and replica-to-server assignments are
static, although in practice ranges need to be moved, split
and merged to balance load effectively. This can be ac-
complished using well-known techniques [23,26,29,74],
which we leave for future work.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 347

5.2.1 Leader Selection and Disjointedness

Each range should have a designated leader replica that
holds the leader lease. The leader selection is piggy-
backed on the Paxos log implementation, i.e., a replica
attempting to acquire the leader lease does so by append-
ing a lease acquisition entry to the Paxos log. This log
entry includes, among other information, the identity of
the replica that is the lease holder, an epoch interval enti-
tling the replica to leadership status as long as the epoch
(maintained by the epoch service) falls within this inter-
val, and leader sequence number, which is incremented
whenever a new replica becomes the leader (but not when
an existing leader renews its lease). The leader returns
the sequence number to the client on every request, so the
client can detect leadership changes and abort the trans-
action if the transaction observes two different leaders
for the same range. When a leader is renewing its lease
or a new leader is taking over, they read the epoch from
the epoch service and set the upper interval ahead of the
current value (by 100 in our prototype); it is important
that the upper end is not too far ahead of the epoch, be-
cause this would effectively prevent other replicas from
taking over if the leader goes down, until the true epoch
catches up.

To prevent two replicas from acquiring leases with
overlapping epoch intervals, a lease acquisition entry by
a replica includes a copy of the lease believed to be the
most recent. Other replicas will reject a replica’s attempt
to get the lease if they are aware of a more recent lease
having been granted. This guarantees that at any point in
time there is at most one leader for any range, and that
only one range leader can successfully prepare transac-
tions for an epoch. We call this the Leader Disjointed-
ness invariant. In §5.4 we explain how we use it to vali-
date transaction locks, and later in §6 we describe its role
in the correctness of our lock-free snapshot reads.

5.3 Transaction State Store

The transaction state store is responsible for storing the
state of active transactions in the system in a fault-
tolerant, replicated manner, to mitigate 2PC blocking.

Each transaction can be in one of the following states:
Started, Committed, Aborted, and Done. Note that being
Prepared is not of concern here. We use the well-known
presumed abort optimization [59], meaning that the ser-
vice replies Aborted to a participant’s inquiry about the
state of a transaction unknown to the service. Being in
Done state means that all transaction participant ranges
have learned about the commit outcome of the transac-
tion so that the service can safely forget about it.

The service is hash-partitioned by transaction id. Each
partition is assigned to (typically) three servers. We do

Figure 3: Simplified Chardonnay Client API

not need a per partition log to order transactions, since
transactions are already ordered by 2PL. Instead, within a
partition, each transaction state is represented as its own
Multi-Paxos replicated log, which can have at most 3 en-
tries. Position 0 always contains the Started entry, po-
sition 1 can either contain Committed or Aborted, and
position 2 is to record Done state. This unusual design
is key to a 2PC latency optimization that we describe in
appendix A.1.

Recall that the client in Chardonnay acts as the 2PC
coordinator. If the client crashes after starting the Pre-
pare phase and before completing the transaction, the
participant ranges need to determine whether to commit
or abort. A KV Service range leader will attempt to put
an Abort entry in the transaction state log (in position 1).
If it succeeds, it can safely abort the transaction. The
transaction state store is the source of truth regarding a
transaction outcome. If the KV range leader successfully
installs an abort decision for the transaction with the TX
state store, a slow client cannot then succeed in commit-
ting it at a later point. Alternatively, after running the
Paxos state machine, the KV range could learn that the
client already put a Commit entry in that log position, in
which case it can safely apply the transaction.

5.4 Client
The client provides an interface for users to access
the database, and also acts as the 2PC coordinator in
Chardonnay. After the transaction finishes execution, the
client reads the epoch from the epoch service in paral-
lel to issuing Prepare RPCs to participant range leaders.
Each leader that accepts the Prepare request responds
with a Prepared message that includes the epoch inter-
val on its lease. The client then checks that the epoch it
read falls within the lease’s epoch interval of every par-
ticipant, and if not, aborts the transaction. This is neces-
sary to maintain the leader disjointedness invariant. If all
the participants prepare successfully and the lease valida-
tions pass, the client then calls the transaction state store

348 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to record the transaction’s commit durably. The Commit
record includes the participant ranges and the value of the
epoch. Finally, the client calls the participant range lead-
ers to notify them of the commit so they can record it lo-
cally and release all the locks. Transactions in Chardon-
nay must wait until the transaction Commit is recorded
before releasing any locks, for the correctness of snap-
shot reads (§6). This implies that even read locks for
successfully prepared transactions have to survive leader
changes and thus must be logged in the WAL during the
Prepare phase.

Many, if not most transactions only touch keys within
a single range, so they do not need 2PC. First, the client
reads the epoch. Then, it sends a Commit message to
the leader, which checks that the epoch falls within the
lease’s epoch interval. If so, the leader appends to the
WAL and if successful, returns success. If not, it aborts.

6 Snapshots

This section describes Chardonnay’s multi-versioning
and snapshot read protocols. Snapshot reads are essential
to efficiently support read-only queries. They also un-
derpin the techniques described in subsequent sections.
Queries have to be declared as read-only from the start;
a transaction that starts normally without this declaration
but only performs reads is treated as a read-write trans-
action by the system, and does not utilize the lock-free
snapshot read algorithm.

6.1 Versioning

Each user record has a key k and one or more versions
stored in the database. The key for each version is the
pair ⟨k, VID⟩, where VID (version ID) is determined as
follows. Its prefix is the value of the epoch that the client
reads in parallel to running the Prepare phase of 2PC.
A counter (starting from 1) is appended to the epoch to
distinguish writes by different transactions in the same
epoch. A transaction chooses a single suffix that makes
its VID greater than that of the existing VIDs in its write
set. Deletes need to have versions as well, so they appear
as tombstones. For convenience, the system also stores
an unversioned record with just the key k which holds the
latest value and is updated in place.

6.2 Read Algorithm

Epoch Ordering Property: There exists an equiva-
lent ordering to the transaction ordering enforced by
Chardonnay’s strict 2PL such that for all pairs of com-
mitted transactions, T1 with an epoch e1, and T2 with an
epoch e2, if e1 < e2, then T1 precedes T2.

We present a proof sketch of this property in ap-
pendix A.2. The epoch ordering property ensures that
epoch boundaries are consistent points in the serial or-
der and appropriate for serializable snapshot reads, i.e., a
transaction can get a consistent snapshot as of the begin-
ning of the current epoch ec by ensuring it observes the
effects of all committed transactions that have a lower
epoch. Suppose all the transactions with an epoch e
< ec have committed. Reading a user key k as of the
start of epoch ec translates to reading the value of key
⟨k, VID⟩ such that VID is the largest value < ⟨ec, 0⟩ in
the database. Hence, the snapshot read algorithm would
simply work by reading the epoch ec, then reading the
appropriate key versions.

The main challenge is ensuring that the snapshot is
complete, i.e., no more transactions will be committing
with an epoch below ec. Any transaction that has not
started to prepare is guaranteed to have an epoch of at
least ec, by the monotonic epoch invariant.

The problem is prepared (or preparing) transactions
that are not yet known to have committed. Fortunately,
any such transaction that could possibly commit writes
must already be holding write locks at the current range
leader. More formally, the transaction must be holding
write locks on any replica whose leader lease’s epoch
interval upper end is above ec. To see why this holds,
suppose a transaction T with an epoch eT < ec has com-
pleted the Prepare phase but not the Commit phase. Re-
call from §5.4 that the client acting as T’s coordinator re-
ceives the epoch range of the lease from the range leader
it used to perform the Prepare, and checks whether eT
falls within that epoch range. If it did not, then the client
aborts the transaction so it cannot possibly commit. Oth-
erwise, recall that transactions do not release any locks
until the commit phase, including across leader changes.
Therefore, it must be that the locks are held on the leader
whose lease’s epoch range contains ec (and by the leader
disjointedness invariant, there can be at most one such
replica), and any subsequent leader replica. A similar ar-
gument shows why the same holds for transactions that
started but have not finished the Prepare phase. Hence,
the read algorithm first reads the current epoch ec (once
per transaction), ensures it is below the upper end of the
leader’s epoch interval, and waits for the current holders
of write locks (if any) on its read set to release these locks
before executing the reads. The read is not attempting
to acquire locks, so it does not contend with read-write
transactions.

The algorithm as described so far does not guarantee
linearizability, because a transaction T would not observe
the effects of transactions in epoch ec that committed be-
fore T started. If desired, ensuring linearizability is easy
at the cost of some latency; after T starts, it waits for the
epoch to advance once and then use the new epoch.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 349

6.3 Garbage Collection

Chardonnay must periodically remove old record ver-
sions to avoid running out of space. Chardonnay uses the
lower end of its range leader lease’s epoch interval to de-
termine which versions are no longer needed and can be
garbage collected. There is a background job running on
each range replica that removes versioned records (other
than the newest version of a record) whose epoch is less
than a delta from the lower end of the epoch interval.
A snapshot read must validate that its epoch value lies
within that delta from the lower end of the interval after
executing its reads, to avoid reading an incomplete snap-
shot due to versions being deleted. In our experiments
we configure the delta to be 6000, so that versions are
kept at least for roughly one minute before they are GC’d.
Additionally, since snapshot reads only happen at epoch
boundaries, when a new version of a record is inserted,
if it has the same epoch as the previous version then that
previous version is immediately deleted. This optimiza-
tion significantly reduces the number of versions main-
tained for records that are updated very frequently (i.e.
highly-contended records).

7 Prefetching

Our experiments in §4 show that with fast 2PC, reading
from slow storage becomes a primary cause of a transac-
tion’s contention footprint. Hot contended records will
typically be cached in the database’s memory. However,
this does not fully address the issue because a transaction
might access hot records along with other cold records
that are not good candidates for caching. There are sev-
eral well-known techniques to work around this prob-
lem [20]. For example, the programmer could manually
prefetch records before executing the transaction. An-
other technique is to ensure hot records are the last to be
accessed. This is beneficial because it minimizes the ex-
ecution time during which access to the hot record causes
a conflict. Unfortunately, these are are not always appli-
cable, and they push a lot of complexity to programmers.

We could require the programmers to label their
queries with the read set. Then the system can prefetch
the records (i.e., key-value pairs) identified by those keys
to memory before executing the transaction and pin them
until the transaction finishes, so that no time is spent
reading from slow storage while locks are held. How-
ever, this scheme restricts the programming model, and is
incapable of supporting dependent queries, that is, ones
whose read set cannot be determined prior to executing
the query [76]. This contradicts Chardonnay’s goal of a
general programming model (e.g., supporting SQL).

Instead, Chardonnay transparently uses the client’s
code to first execute the query in a lock-free, dry run

mode to load the read set to memory, then executes nor-
mally with 2PL.

It is of course possible for the read set to change by
the time the actual transaction executes. One reason is
that only the values of one or more records change due
to a write by another transaction. Chardonnay handle
this correctly and with no performance penalty, by re-
flecting the changes in its prefetching buffer (§7.3). The
other possibility, in the case of dependent queries, is that
the set of keys itself changes, so the transaction has to
read some keys that had not been prefetched and pinned.
This does not pose a correctness problem but may cause
a transaction to read additional data from disk while it is
holding the locks, and thereby increasing its contention
footprint. Fortunately, prior work has shown this seldom
happens in real-world workloads [76]; dependent queries
are commonly ones that must read from a secondary in-
dex to identify their full read and write sets. Since sec-
ondary indices are fairly expensive to modify, they are
seldom kept on fields whose values are updated very fre-
quently. One example of such transactions is the “Pay-
ment” transaction of the TPC-C benchmark. Since the
TPC-C benchmark workload never modifies the index on
which Payment transactions’ read and write sets may de-
pend [76], the set of keys read by a Payment transaction
never changes between the dry run and the execution.

One additional benefit of strongly consistent dry run
queries is that if the application logic aborts the transac-
tion on its own, there is no need to perform the actual ex-
ecution. On the other hand, using dry run queries has two
main disadvantages. First, it adds to the query latency, al-
though this additional latency does not contribute to the
contention footprint. Second, it requires executing the
transaction logic twice before committing. While OLTP
read-write transactions tend to be small, this could still
be wasteful if the transaction is compute-intensive, par-
ticularly in low contention cases. The user can disable
dry run queries by using a different API. In the future,
we plan to explore automatically deciding when to do
prefetching based on the characteristics of the workload.

7.1 API
The API shown in Figure 3 is more suited to user-
interactive transactions (e.g., a user executing a multi-
statement SQL transaction at a console, examining in-
termediate results before writing more queries). To use
prefetching, a slightly different API is used to start the
transaction where the caller passes a function that exe-
cutes the transaction logic, i.e.,

<typename T>

T run(std::function< T(Transaction*) > query)

Within the function, the code can freely call the read,
scan, or write APIs using the transaction object that gets

350 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

passed. There are essentially no restrictions on the code
inside the function, even though in practice it would have
no side effects beyond the transaction’s writes to the
database itself. This does not add any unusual restric-
tions; any transaction might have to abort, and side ef-
fects outside of the transaction cannot be rolled back.

7.2 Semantics
The dry run query runs under snapshot isolation using
our snapshot read mechanism that we described in §6,
and can be configured to be strictly serializable if de-
sired. Running under a lower isolation level such as read
committed [19] could be problematic because it exposes
the programmer’s code to anomalies that would not hap-
pen in the serializable execution. This might cause the
client’s code to abort the transaction, prematurely end-
ing prefetching, or worse, crash. Therefore, we do not
use a lower isolation level because prefetching should be
transparent to the user.

7.3 Design
Each range leader maintains a prefetching buffer to store
a transaction’s read set’s records in main memory. The
prefetching buffer tracks which records are in main mem-
ory and allows transactions to request pinning keys. Any
committed write to a pinned record updates the value in
the buffer, so that it becomes a write-through consistent
cache for pinned records, and any transaction that needs
to read a pinned key can just get its value from the cache
and not have to go to the database.

To efficiently support range-queries, the prefetching
buffer tracks key ranges not just individual keys; if a
key range is pinned to the buffer, and a new transaction
inserts (or deletes) a record whose key falls within that
range, that new record is pinned too. Hence, a transac-
tion that sees a range is pinned to the buffer can satisfy a
range read from the cache without going to the database.

When a transaction is running in dry run mode, it reads
the committed, snapshot value from the database with-
out acquiring any locks, requests pinning the key (or key
range), and then returns the committed value to the client
to continue executing the query. In most cases both the
snapshot and latest versions can be read using a single
IO, so this does not typically increase the IO overhead.
Writes made by the dry run query never make it to the
KV Service, and are discarded at the client after the dry
run. After the dry run completes, the client library reruns
the transaction in normal mode. When that transaction
finishes (i.e. commits or aborts), the keys are unpinned
and become eligible for eviction.

It is possible that a request to pin a record cannot be
satisfied because the range leader has run out of mem-

ory. In this case the dry run query could be delayed until
memory frees up, or just be aborted. This serves as effec-
tive admission control prior to acquiring any locks. Some
care is needed to avoid a potential live-lock situation, but
in the worst case transactions can skip prefetching.

7.4 Handling Resource Contention
Dry run queries execute most of the transaction logic
in Chardonnay, so that when the actual transaction ex-
ecutes it only needs to perform minimal work. However,
if we are not careful, the activity from dry run queries
and other background tasks such as garbage collection
and compaction can compete with transactions for re-
sources on the machines running the KV-service ranges.
As a side effect, this could slow down the lock-acquiring
transaction and increase data contention. Therefore, we
dedicate resources on each machine to transactions to en-
sure they are insulated from lower-priority activity that
does not hold locks.

8 Deadlock Avoidance

Since Chardonnay uses 2PL, it has to deal with the prob-
lem of deadlocks. An easy solution is transaction time-
outs, since they are needed anyway to deal with various
possible failures. Unfortunately, a deadlocked transac-
tion would be holding locks for the entire timeout du-
ration before these locks are released. Another popular
choice is a deadlock prevention scheme such as Wait-
Die or Wound-Wait [64], but they can be too conservative
(i.e., aborting transactions that are not deadlocked) which
can become problematic under high contention. A more
common choice in practice is deadlock detection [63] via
detecting cycles in the wait-for graph [38,72] and break-
ing the cycle by choosing a transaction to abort. This
requires significant overhead for maintaining the global
wait-for graph state, and potentially frequent aborts.

By making all transactions acquire their locks in the
same order, we can prevent deadlocks. In Chardonnay,
the read and write sets of the transaction are (approxi-
mately) computed by dry run queries, prior to acquiring
any locks. We acquire the locks in ascending key order
prior to actually executing the transaction. A naive im-
plementation of this idea would require adding |read set
∪ write set| round-trips to the contention footprint to ac-
quire the locks. Instead, the client uses an approach sim-
ilar to RPC Chains [71], which cuts the round-trips re-
quired roughly in half compared to the naive approach.
The client in Chardonnay sends one RPC to the first
range from which it needs keys. The range acquires all
the local locks, performs all the necessary local reads,
and then forwards the request to the next range. The
client immediately sends an RPC to the last range in the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 351

0.00001 0.001 0.1 1
Contention Index

0

5000

10000

15000

20000

Th
rou

gh
pu

t (
TP

S)

Chardonnay
Prefetching-only
Baseline

(a) 10% Distributed Transactions.

0.00001 0.001 0.1 1
Contention Index

0

2500

5000

7500

10000

12500

15000

17500

Th
rou

gh
pu

t (
TP

S)

Chardonnay
Prefetching-only
Baseline

(b) 100% Distributed Transactions.

Figure 4: Contention Microbenchmark Throughput Results

request, which holds the RPC until the request arrives.
After finishing its local work, the last range replies to the
client’s RPC with all the read results. When this is done,
the client runs the transaction logic. If the transaction
invokes a read for a key or key range (that the client al-
ready has), the client returns it immediately since it has
the lock on the data (and will detect and abort the trans-
action if that lock is lost before commit). If transaction’s
read or write set changes between the dry run and actual
transaction, the client cannot serve the reads from its lo-
cal cache and has to send the read requests to the ranges.
We fall back to Wound-Wait for these locks.

If most transactions are likely to perform multiple
read operations involving multiple network round-trips
and reads from slow storage, then a developer might be
tempted to parallelize those accesses, if possible, to re-
duce the contention footprint. Whether this is done with
parallel threads or asynchronous APIs, it adds complex-
ity to the programming model. Our scheme gets the same
benefit without this complexity. On the other hand, the
scheme can actually increase a transaction’s contention
footprint, because lock acquisition has to be serialized.
There is no overhead for the common case of transac-
tions accessing a single range. We allow the programmer
to disable ordered lock acquisition per transaction. In the
future, we plan to adaptively apply the technique.

9 Evaluation

In this section we study how Chardonnay performs un-
der contention (§9.1), its scalability (9.2), and its snap-
shot read performance (§9.3). To evaluate contention, we
use a benchmark used by Calvin [76], which is inspired
by TPC-C’s New-Order transaction. For scalability ex-
periments, we use the standard TPC-C benchmark, and
for read latency we use YCSB [28]. In all experiments
the KV service range leaders use Standard L8s v2 Azure

VMs, which provide 8 vCPU cores and 64GB of memory
and support accelerated networking necessary for eRPC.
We place the database on directly-attached SSD for high
IOPS. For the WAL, we emulate NVMe on DRAM via
RAMdisk, since it is not currently offered on Azure. We
advance the epoch every 10ms. All results are 10 minute
averages unless otherwise stated.

9.1 Contention Microbenchmark

We use a benchmark introduced in Calvin [76] to eval-
uate Chardonnay’s performance under high contention.
Each transaction in the benchmark reads 10 records, per-
forms a constraint check on the result, and if the check
passes, updates a counter in each record. The records in
each KV-service range are divided into two disjoint sets:
cold and hot. Each transaction can either be local or dis-
tributed. A local transaction accesses 9 records chosen at
random from the cold set in the target range, and 1 record
chosen at random from the hot set. A distributed trans-
action is similar, except it accesses 8 cold records and an
additional hot record in a different range. The number of
cold records in each range is much larger than available
memory so cold records will be mostly served from disk.
The number of hot records is determined by a parameter
called the contention index, which is set to be the inverse
of the number of hot records and represents the probabil-
ity that two transactions accessing the same range will
conflict. Hence, a contention index of 0.01 means that
there are 100 hot records per range, while a contention
index of 1 means that there is 1 hot record (which is ac-
cessed by all transactions touching that range). The con-
tention index controls the degree of parallelism within
each range (e.g., a contention index of 1 means that all
transactions within a range are serialized).

We wrote each transaction using simple, synchronous
APIs. This means that all reads are executed sequentially.

352 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

This is not a requirement, but it highlights the additional
benefits of Chardonnay’s dry run and deadlock avoidance
schemes, which move sequential operations outside of
the contention footprint. The ordering of the reads done
by each transaction is random, so there is variance in the
time hot records spend under lock.

Setup. We use 6 ranges, and each range leader is as-
signed its own VM. We evaluate the following configu-
rations of Chardonnay:

• Baseline. All transactions run without dry-run
queries, so they do not perform prefetching or or-
dered lock acquisition. This is essentially a classic
shared-nothing system architecture with a fast 2PC
implementation, and Wound-Wait for deadlocks.

• Prefetching-only. Transactions run with dry-run
queries, but only do prefetching and not ordered
lock acquisition.

• Chardonnay. All transactions perform prefetching
and ordered lock acquisition.

Initially, we planned to compare against Cock-
roachDB [74] as a representative for a modern shared-
nothing system. However, we realized that retrofitting
the system with eRPC would be a very significant en-
gineering effort. Running the (full SQL) system un-
changed on the same experimental setup yielded low
throughput (TPS per node is 90% less than Chardonnay).
Hence, we use our baseline configuration for apples-to-
apples comparison, as it is a good representative of the
shared-nothing architecture.

We plot the throughput and abort rates under different
values of contention index in Figures 4 and 5.

Analysis. As expected, under low contention, the dry
run queries in Chardonnay are mostly wasteful and con-
sequently the baseline configuration has slightly better
throughput. Notably, full Chardonnay performs better
than prefetching-only even under low contention. This
is because ordered lock acquisition issues Lock & Read
requests in a batched, efficient manner, as opposed to
sequentially issuing an RPC per read during the trans-
action execution in the prefetching-only configuration.
This further supports our intuition that Chardonnay’s or-
dered lock acquisition scheme enables writing the trans-
actions in a simple, synchronous manner without a sig-
nificant performance penalty. As contention increases,
the overall throughput becomes constrained by the con-
tention footprint, and in particular, the length of time
locks on hot records also increases. The baseline con-
figuration has the sharpest drop in throughput, since it
has to issue multiple RPCs and reads from slow stor-
age while holding locks. The full Chardonnay config-
uration performs best under high contention and has zero
aborts. Prefetching-only fares much better than baseline,

even though it suffers a significant drop in throughput
due to increased deadlock avoidance abort rates under
contention, as well as increased contention footprint due
to RPCs.

In the 10% distributed transactions case, transactions
essentially never deadlock since they can only conflict on
one record in the vast majority of cases. Yet, the Wound-
Wait deadlock avoidance scheme is too conservative and
results in many unnecessary aborts as contention in-
creases; see Figure 5. Note that because the base configu-
ration’s transactions have a much larger contention foot-
print, even a relatively modest 0.001 contention index is
affected by these superfluous aborts. A less conserva-
tive scheme such as deadlock detection would not suffer
from this, at the cost of taking much longer to resolve the
deadlock when an actual one appears. In Chardonnay, we
largely avoid deadlock aborts and only use Wound-Wait
as a fall-back mechanism, as discussed in §8.

One interesting property of Chardonnay is that dis-
tributed transactions are not dramatically more expensive
than local transactions. The peak throughput under low
contention with 100% distributed transactions is roughly
22% lower than with only 10% distributed transactions.
This makes the importance of reducing cross-partition
transactions less significant, thus relieving database ad-
ministrators and developers from the requirement to con-
tinually re-partition the application data to minimize
cross-partition transactions [30, 35, 36, 60, 73]. The big
difference in throughput between 10% and 100% ratio
of distributed transactions under higher contention index
values is largely because each transaction in the 100%
distributed case accesses two items from the hot set, not
because the transaction is distributed. This is in part be-
cause 2PC is highly optimized in Chardonnay, but also
because non-distributed transactions have to go through
a phase of reading the epoch before committing. Our re-
sults for the 10% distributed case show that the benefits
of Chardonnay are not limited to distributed transactions.

9.2 Scalability
The scalability of the System R*-style shared-nothing ar-
chitecture is well established [80], but Chardonnay intro-
duces the read-epoch operation during each transaction’s
2PC. Therefore, we need to ensure that the epoch service
can keep up with an increasing scale.

TPC-C New-Order. Similar to prior work [76], we
limited our TPC-C implementation to the New Order
transaction, which is the bulk of the TPC-C workload
including almost all distributed transactions that require
high isolation. We would expect similar results if we
were to run the full TPC-C benchmark. We assign each
KV service range leader to a dedicated VM and have it

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 353

0.00001 0.001 0.01 0.1 1
Contention Index

0

10

20

30

40

50
Ab

or
t R

at
e (

%
)

Baseline
Prefetching-only
Chardonnay

Figure 5: Abort rates for 10% distributed tx micro-
benchmark. Chardonnay’s deadlock aborts are 0%.

host 10 warehouses. We limit the overall throughput to
2500 TPS per node, since we aim to evaluate the scal-
ability of the system rather than the raw per-node peak
throughput. The clients run on dedicated VMs, separate
from Chardonnay nodes. (Recall that in Chardonnay, the
execution of the transaction logic happens on the client.)
We plot the results in Figure 6, which show stable 2PC
latency as the system scales linearly.

Comparison with Calvin. Chardonnay is able to reach
similar New-Order throughput scale as reported by
Calvin [76], without Calvin’s significant programming
model restrictions (described in §10). Calvin’s reported
single-datacenter latency is much higher than Chardon-
nay (∼100ms), but the comparison is not meaningful
since it does not use fast RPC and storage. However, with
10ms epoch duration as in our setup, we expect Calvin
adds 5ms to the median latency since it groups transac-
tions into batches at the start of each epoch. Therefore,
even with fast RPC and storage, we expect Calvin’s me-
dian latency to be higher than Chardonnay’s P99 latency.

Epoch microbenchmark. To test the limits of the
Epoch service, we wrote a micro-benchmark where each
thread simulates a Chardonnay client node running 2PC.
We run 30 client nodes with 8 threads each, where each
thread is issuing 5000 read-epoch calls per second for a
total of 1,200,000 calls per second. The median latency
is below 60 µs, which is less than the median for the full
Prepare phase. Since read-epoch runs in parallel to Pre-
pare, this does not increase the overall 2PC latency.

9.3 Snapshot Read Latency
We use YCSB with 50% write and 50% read to eval-
uate snapshot read latency, using a setup similar to §4.
Read operations run with snapshot isolation for this pur-

5 10 15 25 50 100 200
Number of Nodes

0

100

200

300

400

500

Th
rou

gh
pu

t (
KT

PS
)

0

500

1000

1500

2000

2500

3000

3500

4000

La
ten

cy
 (m

icr
os

ec
on

ds
)

TX - P50
TX - P99
2PC - P50
2PC - P99

Figure 6: TPC-C New-Order transaction results.

pose. The dataset fits in DRAM since our focus is mea-
suring protocol overhead, not IO latency. When running
with a uniform distribution of keys, the median latency
of reads is roughly 220 µs. On the other hand, when run-
ning with Zipfian 0.99 distribution it increases to nearly
355 µs. This is because most reads in the Zipfian case are
going to write-hot records and hence almost always have
to wait for locks to be released before they can execute.
We also run the read operations with strict serializability.
The median latency of the read operations increases by
∼5ms since they need to wait for the epoch to advance.

9.4 Range Reads

We devise a simple experiment to demonstrate Chardon-
nay’s effectiveness for range reads. The experiment in-
volves a single range that contains 100 records. There
are two client threads, one is a writer thread that is con-
tinuously deleting and then re-inserting a random record
in the range, and the other is a reader that is executing a
range query to read all records. Even though the reader
thread is not doing any writes, its range read query is not
declared as read-only so that it runs as a read-write trans-
action, not as a snapshot read. We compare the number
of insert operations per second in Chardonnay and the
baseline from §9.1. The results are in Table 2. Without
prefetching, the baseline has to execute the range read
against the database each time while holding the lock on
the entire range, resulting in a longer contention period
and thus slowing down the writer.

10 Related Work

Shared-nothing. Spanner [29], and CockroachDB [74]
are prominent modern examples of systems that uti-
lize shared-nothing architecture, both primarily target-
ing inter-datacenter operations with globally-distributed
workloads. Spanner uses specialized hardware to

354 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Chardonnay Baseline

Insert TPS 914 197

Table 2: Range Read Results.

achieve clock synchronization guarantees that are nec-
essary for its external consistency support. Many design
choices in the system make it hard to support fast transac-
tions within the datacenter. For instance, Spanner guar-
antees correctness of readers by introducing a delay for
writers during the commit protocol until the clock un-
certainty interval has passed, which can add many mil-
liseconds to a transaction’s contention footprint. In con-
trast, Chardonnay guarantees correctness by having read-
ers potentially wait for write locks so that the contention
footprint for writers does not have to increase. Cock-
roachDB is a system with similar emphasis on global
distribution. It does not guarantee external consistency to
avoid requiring specialized clocks, and instead provides
the weaker single-key linearizability (which still relies on
bounded clock skew). Its concurrency control protocol
has optimistic components optimized for low contention.
Shared Disk. Shared-disk [13] is another classic DBMS
architecture [25, 44] that has become popular in re-
cent years in systems such as Amazon Aurora [78, 79],
Socrates [13], and Google’s AlloyDB [2]. These sys-
tems are single-master, in which only one node actively
writes the database, limiting scalability. Aurora also has
a multi-master mode which does not offer serializabil-
ity, and works well for partitionable workloads with lit-
tle cross-partition activity. In contrast, Chardonnay can
horizontally scale both reads and writes with strict seri-
alizability and supports fast cross-partition transactions.
Shared Log. Hyder [21] and Tango [18] scale-out com-
pute without partitioning by utilizing a shared log that
is accessed by all compute nodes. Appending to and re-
playing the log can be a bottleneck limiting scalability.
Deterministic Systems. Deterministic execution has
been explored as an alternative to distributed commit
in systems such as Calvin [76] and Aria [56]. A ma-
jor benefit of using determinism is eliminating transac-
tion aborts due to deadlocks [63], which Chardonnay
largely achieves using its lock ordering scheme. Deter-
ministic execution databases typically have to restrict the
programming model to one-shot transactions. They also
group incoming transactions into batches before execut-
ing them, which can add tens of milliseconds to latency.

Another significant limitation of most deterministic
database systems is they require knowing a transaction’s
read and write set upfront [75, 76]. To support depen-
dent queries, a programmer can precede a transaction
with a lower isolation reconnaissance query to compute

its read/write sets (e.g., OLLP [75, 76]). However, com-
pared to dry run queries in Chardonnay, reconnaissance
queries require changes to the client transaction code and
run at low isolation level, exposing the code to anomalies
that do not appear in the real execution. Furthermore, if
the read or write set of the transaction changes between
running the reconnaissance query and actual transaction,
the transaction must abort. Fauna [3], a DBMS based on
Calvin’s design, eliminates the need for manual recon-
naissance queries at the cost of adding a round of Raft
consensus to the transaction’s contention footprint, and
using OCC, degrading performance under contention.
Snapper [53] is a transaction library for single-node sys-
tems based on the Actor model, which enables determin-
istic execution for transactions that can be labeled with
their read and write sets, while simultaneously support-
ing non-deterministic execution for transactions where
this is not possible.

The Calvin paper proposes using the read set to
prefetch data prior to sequencing the transaction.
Prefetching in Calvin requires precisely estimating I/O
latency [76]. It also happens after the reconnaissance
query, adding to query latency. Notably, Calvin’s de-
signers do not discuss range reads. Presumably even if
a transaction’s entire readset is in memory, it still needs
to run the range query against the database to ensure no
other transaction has inserted or deleted records within
that range.
Distributed epoch-based commit. Coco [57] is an in-
memory system that applies epoch-based group commit
in a distributed setting. It uses a centralized coordina-
tor to synchronously commit transactions in epoch or-
der. This requires adding many milliseconds of latency
to read-write transactions. In contrast, Chardonnay is an
on-disk system that guarantees the equivalence to epoch
ordering, but transactions commit out of epoch order for
low latency.

11 Conclusions

This paper presents Chardonnay, a scale-out, general-
purpose, multi-versioned, on-disk transactional key-
value store optimized for single datacenter deployments
with fast 2PC. Chardonnay takes advantage of fast RPCs
to support strictly serializable snapshot reads without re-
lying on specialized clocks or assumptions about max-
imum clock skew. Chardonnay achieves high perfor-
mance for high contention workloads by automatically
and transparently loading and pinning data from slow
storage to main memory prior to acquiring any locks, and
avoids deadlocks by ordering its lock requests. We be-
lieve that the design principles of Chardonnay can also
be applied in other settings, such as multi-core single-
node systems for high contention workloads.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 355

Figure 7: Recording Transaction State.

12 Acknowledgments

We thank our shepherd, Marc Shapiro, and the anony-
mous reviewers for their many useful comments and sug-
gestions. We also thank Ryan Stutsman, Irene Zhang
and Kyle Raftogianis for their feedback on earlier drafts
of this work. This work was supported in part by a
GE/DARPA grant, a CAIT grant, NSF awards CNS
2106530, CNS 2104292 and CNS 2143868, and gifts
from JP Morgan, DiDi, and Accenture.

A Appendix

A.1 Optimizing 2PC
Pipelined WAL. Since RPCs and log writes are cheap
in our system and low latency is paramount, we do not
batch multiple operations into a single WAL entry. In-
stead, each operation (e.g., a transaction’s Prepare) has
its own WAL entry (hence runs its own instance of the
Paxos state-machine). Furthermore, appends to the WAL
are pipelined [67] (i.e., we do not wait for the previ-
ous entries to be completely written and applied before
starting a new one). Log entries are still applied to the
database in log order for correctness, however. Note that
a Prepare must go through the range leader, which drives
appending it to the log. The long-lived leader design al-
lows the leader to complete a log append using one RPC
in the common case. Hence the latency of a Prepare op-
eration is roughly the sum of the latencies of two RPCs
and one NVMe write.

Client-driven Commit. As mentioned earlier, we use
Paxos to replicate the state of each transaction in the
transaction state store. However, to minimize the number
of required round-trips, we do not designate any of the
replicas as a leader. Leaders in Paxos are an optimiza-
tion used in part to avoid the dueling proposers problem.
Since we carefully designed the state of each transaction
to be an independent Multi-Paxos log, the client is the
only proposer in the vast majority of cases. So requir-
ing it to go through a leader to run the Paxos protocol to
commit (or abort) the transaction adds the latency of a su-

perfluous RPC to the Commit operation (which happens
under transaction locks). Furthermore, the client utilizes
a variant of the well-known technique of chaining Paxos
instances together [24]. As illustrated in Figure 7, when
performing the RPC to run the second (Accept) phase of
Paxos to append log entry 0 (i.e., recording transaction
start), the client simultaneously runs the first (Propose)
phase of Paxos entry number 1 (i.e., reserving the right
to propose the value of proposal number 0). Thus, it in-
curs the latency of only one RPC to append the decision.

A.2 Proof Sketch of Epoch Ordering
We show that if e1 < e2, then T1 cannot have a depen-
dency or anti-dependency on T2. Given that, we can show
that the transaction dependency DAG has no edges that
go from a transaction with a higher to a lower epoch.

We proceed by contradiction by assuming this is false.
This implies that there is (transitively) a read-write or
write-write conflict between T1 and T2, and T2 was or-
dered first. Therefore, T2 released a lock and sometime
later T1 acquired a lock. However, since e1 < e2, the
monotonic epoch invariant implies T1 finished execution
(and acquired all its locks) before T2 did so, a contradic-
tion as transactions do not release any locks until com-
mit. Hence, T1 precedes T2 in the equivalent order.

A.3 Scaling the Epoch Service
Here we discuss briefly how to scale-out the epoch ser-
vice while maintaining the correctness of our snapshot
reads. The basic idea is introduce intermediary epoch
publishers between the epoch service and its clients.
Each publisher maintains a single counter (the epoch)
and is Paxos replicated for high availability, much like
the epoch service itself. However, the publishers do not
advance the counter themselves. Instead, when the epoch
is advanced by the epoch service, it issues RPCs to each
publisher to advance their epoch value. The epoch ser-
vice does not advance the epoch again before it updates
all the publishers (each of which is highly available).
Each client is assigned to one of the publishers, and uses
the same procedure to read the epoch from that publisher
exactly as it would from the epoch service itself.

This design requires slightly weakening the monotonic
epoch invariant, since it is possible for a client to read a
value of the epoch that is one less than the true epoch.
Furthermore, when a client is assigning an epoch to a
transaction, it needs to ensure the epoch is at least as high
as that of any record in its read and write sets, even if the
version it reads from the publisher is lower. Lineariz-
ability of snapshot reads can be ensured at the cost of
additional latency, by waiting for the epoch to advance
twice instead of just once.

356 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] 3D Xpoint: A Breakthrough in Non-Volatile Memory Tech-

nology. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-micron-3d-

xpoint-webcast.html, 2023.

[2] AlloyDB for PostgreSQL. https://cloud.google.com/
alloydb, 2023.

[3] Fauna. https://fauna.com/, 2023.

[4] FlatBuffers. https://google.github.io/flatbuffers/,
2023.

[5] gRPC. https://grpc.io/, 2023.

[6] Intel® OptaneTM SSD DC P5800X Series. https:

//ark.intel.com/content/www/us/en/ark/products/
201859/intel-optane-ssd-dc-p5800x-series-1-6tb-

2-5in-pcie-x4-3d-xpoint.html, 2023.

[7] LevelDB. https://leveldb.org/, 2023.

[8] RocksDB. A persistent key-value store for fast storage environ-
ments. https://rocksdb.org/, 2023.

[9] Toshiba memory introduces XL-FLASH storage class mem-
ory solution. https://business.kioxia.com/en-us/news/
2019/memory-20190805-1.html, 2023.

[10] Ultra-Low Latency with Samsung Z-NAND SSD. https://

www.samsung.com/semiconductor/global.semi.static/
Ultra-Low Latency with Samsung Z-NAND SSD-0.pdf,
2023.

[11] yugabyteDB. https://yugabyte.com/, 2023.

[12] ZippyDB: Facebook’s key value store. https://

engineering.fb.com/2021/08/06/core-data/zippydb/,
2023.

[13] ANTONOPOULOS, P., BUDOVSKI, A., DIACONU, C., HER-
NANDEZ SAENZ, A., HU, J., KODAVALLA, H., KOSSMANN,
D., LINGAM, S., MINHAS, U. F., PRAKASH, N., PUROHIT,
V., QU, H., RAVELLA, C. S., REISTETER, K., SHROTRI, S.,
TANG, D., AND WAKADE, V. Socrates: The new sql server in
the cloud. In Proceedings of the 2019 International Conference
on Management of Data (New York, NY, USA, 2019), SIGMOD
’19, Association for Computing Machinery, p. 1743–1756.

[14] BACON, D. F., BALES, N., BRUNO, N., COOPER, B. F., DICK-
INSON, A., FIKES, A., FRASER, C., GUBAREV, A., JOSHI,
M., KOGAN, E., LLOYD, A., MELNIK, S., RAO, R., SHUE,
D., TAYLOR, C., VAN DER HOLST, M., AND WOODFORD, D.
Spanner: Becoming a sql system. In Proceedings of the 2017
ACM International Conference on Management of Data (New
York, NY, USA, 2017), SIGMOD ’17, Association for Comput-
ing Machinery, p. 331–343.

[15] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A.,
HELLERSTEIN, J. M., AND STOICA, I. Highly available trans-
actions: Virtues and limitations. Proc. VLDB Endow. 7, 3 (nov
2013), 181–192.

[16] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M.,
AND STOICA, I. HAT, not CAP: Towards highly available trans-
actions. In 14th Workshop on Hot Topics in Operating Systems
(HotOS XIV) (Santa Ana Pueblo, NM, May 2013), USENIX As-
sociation.

[17] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J. J., KHOR-
LIN, A., LARSON, J., LEON, J.-M., LI, Y., LLOYD, A., AND
YUSHPRAKH, V. Megastore: Providing scalable, highly avail-
able storage for interactive services. In Conference on Innovative
Data Systems Research (CIDR 2011) (2011).

[18] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU, M.,
PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO, S., ZOU, T.,
AND ZUCK, A. Tango: Distributed data structures over a shared
log. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2013),
SOSP ’13, Association for Computing Machinery, p. 325–340.

[19] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J.,
O’NEIL, E., AND O’NEIL, P. A critique of ansi sql isolation
levels. SIGMOD ’95, Association for Computing Machinery,
p. 1–10.

[20] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[21] BERNSTEIN, P. A., REID, C. W., AND DAS, S. Hyder - a
transactional record manager for shared flash. In CIDR (2011),
www.cidrdb.org, pp. 9–20.

[22] BINNIG, C., CROTTY, A., GALAKATOS, A., KRASKA, T., AND
ZAMANIAN, E. The end of slow networks: It’s time for a re-
design. Proc. VLDB Endow. 9, 7 (mar 2016), 528–539.

[23] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N.,
SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S.,
WU, J., SIMITCI, H., HARIDAS, J., UDDARAJU, C., KHATRI,
H., EDWARDS, A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U., BHARDWAJ, D.,
DAYANAND, S., ADUSUMILLI, A., MCNETT, M., SANKARAN,
S., MANIVANNAN, K., AND RIGAS, L. Windows azure storage:
A highly available cloud storage service with strong consistency.
In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2011), SOSP ’11,
Association for Computing Machinery, p. 143–157.

[24] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos
made live - an engineering perspective (2006 invited talk). In
Proceedings of the 26th Annual ACM Symposium on Principles
of Distributed Computing (2007).

[25] CHANDRASEKARAN, S., AND BAMFORD, R. Shared cache - the
future of parallel databases. In Proceedings 19th International
Conference on Data Engineering (Cat. No.03CH37405) (2003),
pp. 840–850.

[26] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on Op-
erating Systems Design and Implementation - Volume 7 (USA,
2006), OSDI ’06, USENIX Association, p. 15.

[27] CHEN, Y., YU, X., KOUTRIS, P., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., AND SHU, J. Plor: General transac-
tions with predictable, low tail latency. In Proceedings of the
2022 International Conference on Management of Data (New
York, NY, USA, 2022), SIGMOD ’22, Association for Comput-
ing Machinery, p. 19–33.

[28] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM Symposium on Cloud Com-
puting (New York, NY, USA, 2010), SoCC ’10, Association for
Computing Machinery, p. 143–154.

[29] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Span-
ner: Google’s globally distributed database. ACM Trans. Comput.
Syst. 31, 3 (aug 2013).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 357

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://cloud.google.com/alloydb
https://cloud.google.com/alloydb
https://fauna.com/
https://google.github.io/flatbuffers/
https://grpc.io/
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://leveldb.org/
https://rocksdb.org/
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://yugabyte.com/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/

[30] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S.
Schism: A workload-driven approach to database replication and
partitioning. Proc. VLDB Endow. 3, 1–2 (sep 2010), 48–57.

[31] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAP-
ATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN,
S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s
highly available key-value store. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles (New
York, NY, USA, 2007), SOSP ’07, Association for Computing
Machinery, p. 205–220.

[32] DONG, S., KRYCZKA, A., JIN, Y., AND STUMM, M. Evolution
of development priorities in key-value stores serving large-scale
applications: The RocksDB experience. In 19th USENIX Con-
ference on File and Storage Technologies (FAST 21) (Feb. 2021),
USENIX Association, pp. 33–49.

[33] DRAGOJEVIC, A., NARAYANAN, D., NIGHTINGALE, E., REN-
ZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No compromises: distributed transactions with consistency,
availability, and performance. In Symposium on Operating Sys-
tems Principles (SOSP’15) (October 2015), ACM – Association
for Computing Machinery.

[34] EISENMAN, A., CIDON, A., PERGAMENT, E., HAIMOVICH,
O., STUTSMAN, R., ALIZADEH, M., AND KATTI, S. Flashield:
a hybrid key-value cache that controls flash write amplification.
In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19) (Boston, MA, Feb. 2019), USENIX
Association, pp. 65–78.

[35] ELDEEB, T., CHEN, Z., CIDON, A., AND YANG, J. Neuroshard:
Towards automatic multi-objective sharding with deep reinforce-
ment learning. In Proceedings of the Fifth International Work-
shop on Exploiting Artificial Intelligence Techniques for Data
Management (New York, NY, USA, 2022), aiDM ’22, Associ-
ation for Computing Machinery.

[36] ELMORE, A. J., ARORA, V., TAFT, R., PAVLO, A., AGRAWAL,
D., AND EL ABBADI, A. Squall: Fine-grained live reconfigura-
tion for partitioned main memory databases. In Proceedings of
the 2015 ACM SIGMOD International Conference on Manage-
ment of Data (2015), pp. 299–313.

[37] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER,
I. L. The notions of consistency and predicate locks in a database
system. Commun. ACM 19, 11 (nov 1976), 624–633.

[38] GRAY, J. Notes on data base operating systems. In Advanced
Course: Operating Systems (1978).

[39] GUO, Z., WU, K., YAN, C., AND YU, X. Releasing locks
as early as you can: Reducing contention of hotspots by vi-
olating two-phase locking. In Proceedings of the 2021 Inter-
national Conference on Management of Data (New York, NY,
USA, 2021), SIGMOD ’21, Association for Computing Machin-
ery, p. 658–670.

[40] GUO, Z., ZENG, X., WU, K., HWANG, W., REN, Z., YU, X.,
BALAKRISHNAN, M., AND BERNSTEIN, P. A. Cornus: Atomic
commit for a cloud DBMS with storage disaggregation. Proc.
VLDB Endow. 16, 2 (2022), 379–392.

[41] HARDING, R., VAN AKEN, D., PAVLO, A., AND STONE-
BRAKER, M. An evaluation of distributed concurrency control.
Proc. VLDB Endow. 10, 5 (jan 2017), 553–564.

[42] HELLAND, P. Life beyond distributed transactions: an apostate’s
opinion. In Conference on Innovative Data Systems Research
(CIDR 2007) (2007).

[43] HERLIHY, M. P., AND WING, J. M. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (jul 1990), 463–492.

[44] JOSTEN, J. W., MOHAN, C., NARANG, I., AND TENG, J. Z.
Db2’s use of the coupling facility for data sharing. IBM Systems
Journal 36, 2 (1997), 327–351.

[45] KAFFES, K., CHONG, T., HUMPHRIES, J. T., BELAY, A.,
MAZIÈRES, D., AND KOZYRAKIS, C. Shinjuku: Preemptive
scheduling for µsecond-scale tail latency. In Proceedings of the
16th USENIX Conference on Networked Systems Design and
Implementation (USA, 2019), NSDI’19, USENIX Association,
p. 345–359.

[46] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. Datacen-
ter RPCs can be general and fast. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19)
(Boston, MA, Feb. 2019), USENIX Association, pp. 1–16.

[47] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. FaSST:
Fast, scalable and simple distributed transactions with Two-Sided
(RDMA) datagram RPCs. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16) (Savannah,
GA, Nov. 2016), USENIX Association, pp. 185–201.

[48] LAMPSON, B. W., AND LOMET, D. B. A new presumed commit
optimization for two phase commit. In Proceedings of the 19th
International Conference on Very Large Data Bases (San Fran-
cisco, CA, USA, 1993), VLDB ’93, Morgan Kaufmann Publish-
ers Inc., p. 630–640.

[49] LEVANDOSKI, J., LOMET, D., SENGUPTA, S., STUTSMAN, R.,
AND WANG, R. High performance transactions in deuteron-
omy. In Conference on Innovative Data Systems Research (CIDR
2015) (January 2015).

[50] LEVANDOSKI, J., LOMET, D., SENGUPTA, S., STUTSMAN,
R., AND WANG, R. Multi-version range concurrency control in
deuteronomy. Proc. VLDB Endow. 8, 13 (sep 2015), 2146–2157.

[51] LIM, H., KAMINSKY, M., AND ANDERSEN, D. G. Cicada: De-
pendably fast multi-core in-memory transactions. In Proceedings
of the 2017 ACM International Conference on Management of
Data (New York, NY, USA, 2017), SIGMOD ’17, Association
for Computing Machinery, p. 21–35.

[52] LIN, Q., CHANG, P., CHEN, G., OOI, B. C., TAN, K.-L., AND
WANG, Z. Towards a non-2pc transaction management in dis-
tributed database systems. In Proceedings of the 2016 Inter-
national Conference on Management of Data (New York, NY,
USA, 2016), SIGMOD ’16, Association for Computing Machin-
ery, p. 1659–1674.

[53] LIU, Y., SU, L., SHAH, V., ZHOU, Y., AND VAZ SALLES,
M. A. Hybrid deterministic and nondeterministic execution of
transactions in actor systems. SIGMOD ’22, Association for
Computing Machinery, p. 65–78.

[54] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2011), SOSP ’11, Association for Computing
Machinery, p. 401–416.

[55] LOMET, D. B., AND MOKBEL, M. F. Locking key ranges with
unbundled transaction services. Proc. VLDB Endow. 2 (2009),
265–276.

[56] LU, Y., YU, X., CAO, L., AND MADDEN, S. Aria: A fast and
practical deterministic oltp database. Proc. VLDB Endow. 13, 12
(jul 2020), 2047–2060.

[57] LU, Y., YU, X., CAO, L., AND MADDEN, S. Epoch-based com-
mit and replication in distributed oltp databases. Proc. VLDB En-
dow. 14, 5 (jan 2021), 743–756.

[58] MATSUNOBU, Y., DONG, S., AND LEE, H. Myrocks: Lsm-tree
database storage engine serving facebook’s social graph. Proc.
VLDB Endow. 13, 12 (aug 2020), 3217–3230.

358 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[59] MOHAN, C., LINDSAY, B., AND OBERMARCK, R. Transaction
management in the r* distributed database management system.
ACM Trans. Database Syst. 11, 4 (dec 1986), 378–396.

[60] QUAMAR, A., KUMAR, K. A., AND DESHPANDE, A. Sword:
Scalable workload-aware data placement for transactional work-
loads. In Proceedings of the 16th International Conference on
Extending Database Technology (2013), EDBT ’13, p. 430–441.

[61] RAO, J., SHEKITA, E. J., AND TATA, S. Using paxos to build a
scalable, consistent, and highly available datastore. Proc. VLDB
Endow. 4, 4 (jan 2011), 243–254.

[62] REN, K., FALEIRO, J. M., AND ABADI, D. J. Design princi-
ples for scaling multi-core oltp under high contention. In Pro-
ceedings of the 2016 International Conference on Management
of Data (New York, NY, USA, 2016), SIGMOD ’16, Association
for Computing Machinery, p. 1583–1598.

[63] REN, K., THOMSON, A., AND ABADI, D. J. An evaluation of
the advantages and disadvantages of deterministic database sys-
tems. Proc. VLDB Endow. 7, 10 (jun 2014), 821–832.

[64] ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWIS, P. M.
System level concurrency control for distributed database sys-
tems. ACM Trans. Database Syst. 3, 2 (jun 1978), 178–198.

[65] ROTHNIE, J. B., BERNSTEIN, P. A., FOX, S., GOODMAN,
N., HAMMER, M., LANDERS, T. A., REEVE, C., SHIPMAN,
D. W., AND WONG, E. Introduction to a system for distributed
databases (sdd-1). ACM Trans. Database Syst. 5, 1 (mar 1980),
1–17.

[66] RUMBLE, S. M., ONGARO, D., STUTSMAN, R., ROSENBLUM,
M., AND OUSTERHOUT, J. K. It’s time for low latency. In
13th Workshop on Hot Topics in Operating Systems (HotOS XIII)
(Napa, CA, May 2011), USENIX Association.

[67] SANTOS, N., AND SCHIPER, A. Optimizing paxos with batching
and pipelining. Theoretical Computer Science 496 (2013), 170–
183. Distributed Computing and Networking (ICDCN 2012).

[68] SERAFINI, M., TAFT, R., ELMORE, A. J., PAVLO, A., ABOUL-
NAGA, A., AND STONEBRAKER, M. Clay: Fine-grained adap-
tive partitioning for general database schemas. Proc. VLDB En-
dow. 10, 4 (nov 2016), 445–456.

[69] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIĆ, A., NARAYANAN, D., AND
CASTRO, M. Fast general distributed transactions with opacity.
In Proceedings of the 2019 International Conference on Man-
agement of Data (New York, NY, USA, 2019), SIGMOD ’19,
Association for Computing Machinery, p. 433–448.

[70] SKEEN, D. Nonblocking commit protocols. In Proceedings of
the 1981 ACM SIGMOD International Conference on Manage-
ment of Data (New York, NY, USA, 1981), SIGMOD ’81, Asso-
ciation for Computing Machinery, p. 133–142.

[71] SONG, Y. J., AGUILERA, M. K., KOTLA, R., AND MALKHI,
D. Rpc chains: Efficient client-server communication in geodis-
tributed systems. In 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’09) (April 2009),
USENIX.

[72] STONEBRAKER, M. Concurrency control and consistency of
multiple copies of data in distributed ingres. IEEE Transactions
on Software Engineering SE-5, 3 (1979), 188–194.

[73] TAFT, R., MANSOUR, E., SERAFINI, M., DUGGAN, J., EL-
MORE, A. J., ABOULNAGA, A., PAVLO, A., AND STONE-
BRAKER, M. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. Proceedings of the
VLDB Endowment 8, 3 (2014), 245–256.

[74] TAFT, R., SHARIF, I., MATEI, A., VANBENSCHOTEN, N.,
LEWIS, J., GRIEGER, T., NIEMI, K., WOODS, A., BIRZIN,

A., POSS, R., BARDEA, P., RANADE, A., DARNELL, B.,
GRUNEIR, B., JAFFRAY, J., ZHANG, L., AND MATTIS, P. Cock-
roachdb: The resilient geo-distributed sql database. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2020), SIGMOD
’20, Association for Computing Machinery, p. 1493–1509.

[75] THOMSON, A., AND ABADI, D. J. The case for determinism in
database systems. Proc. VLDB Endow. 3, 1–2 (sep 2010), 70–80.

[76] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,
P., AND ABADI, D. J. Calvin: Fast distributed transactions
for partitioned database systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2012), SIGMOD ’12, Association
for Computing Machinery, p. 1–12.

[77] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,
S. Speedy transactions in multicore in-memory databases. In
Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2013), SOSP ’13,
Association for Computing Machinery, p. 18–32.

[78] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADESAM, M.,
GUPTA, K., MITTAL, R., KRISHNAMURTHY, S., MAURICE,
S., KHARATISHVILI, T., AND BAO, X. Amazon aurora: De-
sign considerations for high throughput cloud-native relational
databases. In SIGMOD 2017 (2017).

[79] VERBITSKI, A., GUPTA, A., SAHA, D., COREY, J., GUPTA,
K. K., BRAHMADESAM, M., MITTAL, R., KRISHNAMURTHY,
S., MAURICE, S., KHARATISHVILI, T., AND BAO, X. Ama-
zon aurora: On avoiding distributed consensus for i/os, commits,
and membership changes. Proceedings of the 2018 International
Conference on Management of Data (2018).

[80] YANG, Z., YANG, C., HAN, F., ZHUANG, M., YANG, B.,
YANG, Z., CHENG, X., ZHAO, Y., SHI, W., XI, H., YU, H.,
LIU, B., PAN, Y., YIN, B., CHEN, J., AND XU, Q. Oceanbase:
A 707 million tpmc distributed relational database system. Proc.
VLDB Endow. 15, 12 (2022), 3385–3397.

[81] ZAMANIAN, E., BINNIG, C., HARRIS, T., AND KRASKA, T.
The end of a myth: Distributed transactions can scale. Proc.
VLDB Endow. 10, 6 (feb 2017), 685–696.

[82] ZAMANIAN, E., SHUN, J., BINNIG, C., AND KRASKA, T.
Chiller: Contention-centric transaction execution and data par-
titioning for modern networks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2020), SIGMOD ’20, Association
for Computing Machinery, p. 511–526.

[83] ZHANG, I., RAYBUCK, A., PATEL, P., OLYNYK, K., NELSON,
J., LEIJA, O. S. N., MARTINEZ, A., LIU, J., SIMPSON, A. K.,
JAYAKAR, S., ET AL. The demikernel datapath OS architecture
for microsecond-scale datacenter systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles
(2021), pp. 195–211.

[84] ZHANG, M., HUA, Y., ZUO, P., AND LIU, L. FORD: Fast one-
sided RDMA-based distributed transactions for disaggregated
persistent memory. In 20th USENIX Conference on File and
Storage Technologies (FAST 22) (Santa Clara, CA, Feb. 2022),
USENIX Association, pp. 51–68.

[85] ZHONG, Y., LI, H., WU, Y. J., ZARKADAS, I., TAO,
J., MESTERHAZY, E., MAKRIS, M., YANG, J., TAI, A.,
STUTSMAN, R., AND CIDON, A. XRP: In-Kernel storage func-
tions with eBPF. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22) (Carlsbad, CA, July
2022), USENIX Association.

[86] ZHONG, Y., WANG, H., WU, Y. J., CIDON, A., STUTSMAN,
R., TAI, A., AND YANG, J. Bpf for storage: An exokernel-
inspired approach. In Proceedings of the Workshop on Hot Topics

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 359

in Operating Systems (New York, NY, USA, 2021), HotOS ’21,
Association for Computing Machinery, p. 128–135.

[87] ZHOU, J., XU, M., SHRAER, A., NAMASIVAYAM, B., MILLER,
A., TSCHANNEN, E., ATHERTON, S., BEAMON, A. J., SEARS,
R., LEACH, J., ROSENTHAL, D., DONG, X., WILSON, W.,
COLLINS, B., SCHERER, D., GRIESER, A., LIU, Y., MOORE,
A., MUPPANA, B., SU, X., AND YADAV, V. Foundationdb: A
distributed unbundled transactional key value store. In SIGMOD
’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021 (2021), ACM, pp. 2653–2666.

360 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background
	Strict Serializability
	2PC Recap
	The Penalty of 2PC

	Requirements
	Measuring Contention Footprint
	Architecture
	Epoch Service
	KV Service
	Leader Selection and Disjointedness

	Transaction State Store
	Client

	Snapshots
	Versioning
	Read Algorithm
	Garbage Collection

	Prefetching
	API
	Semantics
	Design
	Handling Resource Contention

	Deadlock Avoidance
	Evaluation
	Contention Microbenchmark
	Scalability
	Snapshot Read Latency
	Range Reads

	Related Work
	Conclusions
	Acknowledgments
	Appendix
	Optimizing 2PC
	Proof Sketch of Epoch Ordering
	Scaling the Epoch Service

